# zbMATH — the first resource for mathematics

Multiscale model reduction for transport and flow problems in perforated domains. (English) Zbl 1432.76086
Summary: Convection-dominated transport phenomenon is important for many applications. In these applications, the transport velocity is often a solution of heterogeneous flow problems, which results to a coupled flow and transport phenomena. In this paper, we consider a coupled flow (Stokes problem) and transport (unsteady convection-diffusion problem) in perforated domains. Perforated domains (see Fig. 1) represent void space outside hard inclusions as in porous media, filters, and so on. We construct a coarse-scale solver based on Generalized Multiscale Finite Element Method (GMsFEM) for a coupled flow and transport. The main idea of the GMsFEM is to develop a systematic approach for computing multiscale basis functions. We use a mixed formulation and appropriate multiscale basis functions for both flow and transport to guarantee a mass conservation. For the transport problem, we use Petrov-Galerkin mixed formulation, which provides a stability. As a first approach, we use the multiscale flow solution in constructing the basis functions for the transport equation. In the second approach, we construct multiscale basis functions for coupled flow and transport without solving global flow problem. The novelty of this approach is to construct a coupled multiscale basis function. Numerical results are presented for computations using offline basis. We also present an algorithm for adaptively adding online multiscale basis functions, which are computed using the residual information. Numerical examples using online GMsFEM show the speed up of convergence.

##### MSC:
 76D07 Stokes and related (Oseen, etc.) flows 76M10 Finite element methods applied to problems in fluid mechanics 76S05 Flows in porous media; filtration; seepage
Full Text:
##### References:
 [1] Wu, X. H.; Efendiev, Y.; Hou, T. Y., Analysis of upscaling absolute permeability, Discrete Contin. Dyn. Syst. Ser. B, 2, 158-204, (2002) · Zbl 1162.65327 [2] Iliev, O.; Lakdawala, Z.; Starikovicius, V., On a numerical subgrid upscaling algorithm for Stokes-Brinkman equations, Comput. Math. Appl., 65, 3, 435-448, (2013) · Zbl 1319.76056 [3] Iliev, O.; Lazarov, R.; Willems, J., Fast numerical upscaling of heat equation for fibrous materials, Comput. Vis. Sci., 13, 6, 275-285, (2010) · Zbl 1419.74099 [4] Ewing, R.; Iliev, O.; Lazarov, R.; Rybak, I.; Willems, J., A simplified method for upscaling composite materials with high contrast of the conductivity, SIAM J. Sci. Comput., 31, 4, 2568-2586, (2009) · Zbl 1202.80025 [5] O.P. Iliev, I. Rybak, J. Willems, On upscaling of heat conductivity for a class of industrial problems, J. Theor. Appl. Mech., (sumbmited for publication). · Zbl 1202.80025 [6] Arbogast, T.; Boyd, K. J., Subgrid upscaling and mixed multiscale finite elements, SIAM J. Numer. Anal., 44, 3, 1150-1171, (2006), (electronic) · Zbl 1120.65122 [7] Arbogast, T., Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems, SIAM J. Numer. Anal., 42, 2, 576-598, (2004), (electronic) · Zbl 1078.65092 [8] Vassilevski, P. S., Coarse spaces by algebraic multigrid: multigrid convergence and upscaling error estimates, Adv. Adapt. Data Anal., 3, 1-2, 229-249, (2011) · Zbl 1229.65226 [9] Brandt, A., Multiscale solvers and systematic upscaling in computational physics, Comput. Phys. Comm., 169, 438-441, (2005) [10] Chen, Y.; Durlofsky, L.; Gerritsen, M.; Wen, X., A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations, Adv. Water Resour., 26, 1041-1060, (2003) [11] Efendiev, Y.; Galvis, J.; Ki Kang, S.; Lazarov, R. D., Robust multiscale iterative solvers for nonlinear flows in highly heterogeneous media, Numer. Math. Theory Methods Appl., 5, 3, 359-383, (2012) · Zbl 1274.76248 [12] Iliev, O.; Lazarov, R.; Willems, J., Variational multiscale finite element method for flows in highly porous media, Multiscale Model. Simul., 9, 4, 1350-1372, (2011) · Zbl 1244.76024 [13] Y. Efendiev, J. Galvis, Eigenfunctions and Multiscale Methods for Darcy Problems. Technical Report, ISC, Texas A& M University, 2010. · Zbl 1206.76042 [14] Efendiev, Y.; Galvis, J., Domain decomposition preconditioner for multiscale high-contrast problems, (Proceedings of DD19, (2009), ISC, Texas A& M University) [15] Arbogast, T.; Pencheva, G.; Wheeler, M. F.; Yotov, I., A multiscale mortar mixed finite element method, Multiscale Model. Simul., 6, 1, 319-346, (2007), (electronic) · Zbl 1322.76039 [16] Chu, C.-C.; Graham, I. G.; Hou, T.-Y., A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comp., 79, 272, 1915-1955, (2010) · Zbl 1202.65154 [17] Arbogast, T.; Pencheva, G.; Wheeler, M. F.; Yotov, I., A multiscale mortar mixed finite element method, Multiscale Model. Simul., 6, 1, 319-346, (2007) · Zbl 1322.76039 [18] Aarnes, J. E.; Efendiev, Y.; Jiang, L., Analysis of multiscale finite element methods using global information for two-phase flow simulations, SIAM J. Multiscale Model. Simul., 7, 2177-2193, (2008) [19] Efendiev, Y.; Galvis, J.; Hou, T., Generalized multiscale finite element methods, J. Comput. Phys., 251, 116-135, (2013) · Zbl 1349.65617 [20] Chung, Eric; Efendiev, Yalchin; Hou, Thomas Y., Adaptive multiscale model reduction with generalized multiscale finite element methods, J. Comput. Phys., 320, 69-95, (2016) · Zbl 1349.76191 [21] Chung, E. T.; Efendiev, Y.; Li, G., An adaptive gmsfem for high contrast flow problems, J. Comput. Phys., 273, 54-76, (2014) · Zbl 1354.65242 [22] Chung, E.; Efendiev, Y.; Lee, C., Mixed generalized multiscale finite element methods and applications, SIAM Multicale Model. Simul., 13, 338-366, (2014) · Zbl 1317.65204 [23] Chung, Eric T.; Vasilyeva, Maria; Wang, Yating, A conservative local multiscale model reduction technique for Stokes flows in heterogeneous perforated domains, J. Comput. Appl. Math., (2017) · Zbl 06730441 [24] Chen, Fuchen; Chung, Eric; Jiang, Lijian, Least-squares mixed generalized multiscale finite element method, Comput. Methods Appl. Mech. Engrg., 311, 764-787, (2016) [25] Brezzi, F.; Fortin, M., (Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15, (1991), Springer-Verlag New York), x+350 · Zbl 0788.73002 [26] Eric T. Chung, Yalchin Efendiev, Wing Tat Leung, Maria Vasilyeva, Yating Wang, Online Adaptive Local Multiscale Model Reduction for Heterogeneous Problems in Perforated Domains, 2016. arXiv preprint arXiv:1605.07645. · Zbl 1372.65322 [27] Chan, Ho Yuen; Chung, Eric; Efendiev, Yalchin, Adaptive mixed gmsfem for flows in heterogeneous media, Numer. Math.: Theory Methods Appl., 9, 4, 497-527, (2016) · Zbl 1399.65322 [28] Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat, An online generalized multiscale discontinuous Galerkin method (gmsdgm) for flows in heterogeneous media, Commun. Comput. Phys., 21, 2, 401-422, (2017) [29] Chung, E. T.; Efendiev, Y.; Leung, W. T., Residual-driven online generalized multiscale finite element methods, J. Comput. Phys., 302, 176-190, (2015) · Zbl 1349.65615
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.