×

Transcendental Bernstein series for solving nonlinear variable order fractional optimal control problems. (English) Zbl 1433.49044

Summary: This paper deals with finding an approximate solution of variable order fractional optimal control problems (V-FOCPs) based on Lagrange multiplier optimization technique in combination with the new operational matrix of variable order (VO) fractional derivatives. To carry out the proposed approach, we firstly develop the well-known Bernstein polynomials to the new series of functions namely transcendental Bernstein series (TBS). Then, we implement these basis functions to approximate the solutions of V-FOCPs. In fact, the series expansion in TBS with unknown free coefficients and control parameters is the novel idea for solving the fractional systems with less terms of approximation. The convergence analysis of our proposed method, will be guaranteed by proving a new theorem for the TBS. To investigate the practical computational efficiency and accuracy of the presented method, some numerical examples are provided. The experimental results confirm the applicability of the method and a good agreement between the approximate and exact solutions.

MSC:

49M25 Discrete approximations in optimal control
34A08 Fractional ordinary differential equations
49K15 Optimality conditions for problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hilfer, R., Applications of Fractional Calculus to Physics, (2000), World Scientific: World Scientific Singapore · Zbl 0998.26002
[2] Atanackovic, T. M.; Pilipovic, S.; Stankovic, B.; Zorica, D., Fractional Calculus with Applications in Mechanics (2014), Wiley: Wiley London · Zbl 1291.74001
[3] Duarte, F. B.M.; Machado, J. A.T., Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators, Nonlinear Dyn., 29, 342-362 (2002) · Zbl 1027.70011
[4] Engheta, N., On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans. Antenn. Propag., 44, 554-566 (1996) · Zbl 0944.78506
[5] Oldham, K. B., Fractional differential equations in electrochemistry, Adv. Eng. Soft., 41, 9-12 (2010) · Zbl 1177.78041
[6] Gafiychuk, V.; Datsko, B.; Meleshko, V., Mathematical modeling of time fractional reaction diffusion systems, J. Comput. Appl. Math., 220, 215-225 (2008) · Zbl 1152.45008
[7] Mainardi, F., Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0917.73004
[8] Meral, F. C.; Royston, T. J.; Magin, R., Fractional calculus in viscoelasticity: an experimental study, Commun. Nonl. Sci. Numer. Simul., 15, 939-945 (2010) · Zbl 1221.74012
[9] Magin, R. L., Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59, 1586-1593 (2010) · Zbl 1189.92007
[10] Lorenzo, C.; Hartley, T., Variable order and distributed order fractional operators, Nonlinear Dyn., 29, 57-98 (2002) · Zbl 1018.93007
[11] Pedro, H. T.C.; Kobayashi, M. H.; Pereira, J. M.C.; Coimbra, C. F.M., Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere, J. Vib. Control., 14, 1569-1672 (2008) · Zbl 1229.76099
[12] Ramirez, L. E.S.; Coimbra, C. F.M., On the selection and meaning of variable order operators for dynamic modelling, Int. J. Differ. Equ., 2010, 846107 (2010) · Zbl 1207.34011
[13] Ramirez, L. E.S.; Coimbra, C., On the variable order dynamics of the nonlinear wake caused by a sedimenting particle, Phys. D, 240, 1111-1118 (2011) · Zbl 1219.76054
[14] Shyu, J. J.; Pei, S. C.; Chan, C. H., An iterative method for the design of variable fractional-order fir differintegrators, Signal Process., 89, 3, 320-327 (2009) · Zbl 1151.94410
[15] Coimbra, C., Mechanics with variable-order differential operators, Ann. Phys., 12, 11-12, 692-703 (2003) · Zbl 1103.26301
[16] Hajipour, M.; Jajarmi, A.; Baleanu, D.; Sun, H. G., On an accurate discretization of a variable-order fractional reaction-diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 69, 119-133 (2019) · Zbl 1509.65071
[17] Zaky, M. A.; Doha, E. H.; Taha, T. M.; Baleanu, D., New recursive approximations for variable-order fractional operators with applications, Math. Model. Anal., 23, 2, 227-239 (2018) · Zbl 1488.42118
[18] Zaky, M. A.; Baleanu, D.; Alzaidy, J. F.; Hashemizadeh, E., Operational matrix approach for solving the variable-order nonlinear galilei invariant advection-diffusion equation, Adv. Differ. Equ., 2018, 102, 1-11 (2018) · Zbl 1445.65042
[19] Baleanu, D., Fractional hamiltonian analysis of higher order derivatives systems, J. Math. Phys., 47, 10, 103503 (2006) · Zbl 1112.81074
[20] Jia, Y. T.; Xu, M. Q.; Lin, Y. Z., A numerical solution for variable order fractional functional differential equation, Appl. Math. Lett., 64, 125-130 (2017) · Zbl 1353.65067
[21] 061002
[22] Zhang, H.; Liu, F.; Zhuang, P.; Turner, I.; Anh, V., Numerical analysis of a new space-time variable fractional order advection-dispersion equation, Appl. Math. Comput., 242, 541-550 (2014) · Zbl 1334.65143
[23] Zhang, H.; Liu, F.; Phanikumar, M. S.; Meerschaert, M. M., A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model, Comput. Math. Appl., 66, 693-701 (2013) · Zbl 1350.65092
[24] Moghaddam, B. P.; Machado, J. A.T., Extended algorithms for approximating variable order fractional derivatives with applications, J. Sci. Comput., 71, 3, 1351-1374 (2017) · Zbl 1370.26017
[25] Tayebi, A.; Shekari, Y.; Heydari, M. H., A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 340, 655-669 (2017) · Zbl 1380.65185
[26] Dahaghin, M. S.; Hassani, H., An optimization method based on the generalized polynomials for nonlinear variable-order time fractional diffusion-wave equation, Nonlinear Dyn., 88, 3, 1587-1598 (2017) · Zbl 1380.35158
[27] Li, X.; Wu, B., A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations, Appl. Math. Lett., 311, 387-393 (2017) · Zbl 1382.65210
[28] Jia, Y. T.; Xu, M. Q.; Lin, Y. Z., A numerical solution for variable order fractional functional differential equation, Appl. Math. Lett., 64, 125-130 (2017) · Zbl 1353.65067
[29] Bhrawy, A. H.; Zaky, M. A., Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn., 80, 1, 101-116 (2016) · Zbl 1345.65060
[30] Bhrawy, A. H.; Zaky, M. A., Numerical algorithm for the variable-order caputo fractional functional differential equation, Nonlinear Dyn., 85, 3, 1815-1823 (2016) · Zbl 1349.65505
[31] Shen, S.; Liu, F.; Chen, J.; Turner, I.; Anh, V., Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218, 10861-10870 (2012) · Zbl 1280.65089
[32] Chen, Y.; Liu, L.; Li, B.; Sun, Y., Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238, 329-341 (2014) · Zbl 1334.65167
[33] Sweilam, N. H.; Khader, M. M.; Almarwm, H. M., Numerical studies for the variable-order nonlinear fractional wave equation, Frac. Calc. Appl. Anal., 15, 4, 669-683 (2012) · Zbl 1312.65139
[34] 1250085 · Zbl 1258.65079
[35] Chen, Y. M.; Wei, Y. Q.; Liu, D. Y.; Yu, H., Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets, Appl. Math. Lett., 46, 83-88 (2015) · Zbl 1329.65172
[36] Hassani, H.; Avazzadeh, Z.; Machado, J. A.T., Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental bernstein series, Eng. Comput. (2019)
[37] Hassani, H.; Avazzadeh, Z.; Machado, J. A.T., Solving two dimensional variable-order fractional optimal control problems with transcendental Bernstein series, J. Comput. Nonlinear Dyn., 19, 061001-061011 (2019)
[38] Itik, M.; Salamci, M. U.; Banks, S. P., Optimal control of drug therapy in cancer treatment, Nonlinear Anal. Theory Methods Appl., 71, 12, e1473-e1486 (2009)
[39] Mophou, G. M., Optimal control of fractional diffusion equation, Comput. Math. Appl., 61, 68-78 (2011) · Zbl 1207.49006
[40] Ozdemir, N.; Karadeniz, D.; Iskender, B. B., Fractional optimal control problem of a distributed system in cylindrical coordinates, Phys. Lett. A, 373, 2, 221-226 (2009) · Zbl 1227.49007
[41] Manousiouthakis, V.; Chmielewski, D. J., On constrained infinite-time nonlinear optimal control, Chem. Eng. Sci., 57, 1, 105-114 (2002)
[42] Agrawal, O. P., A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38, 1-4, 323-337 (2004) · Zbl 1121.70019
[43] Tang, X.; Shi, Y.; Wang, L.-L., A new framework for solving fractional optimal control problems using fractional pseudospectral methods, Automatica, 38, 333-340 (2017) · Zbl 1357.49157
[44] Bhrawy, A. H.; Ezz-Eldien, S. S.; Doha, E. H.; Abdelkawy, M. A.; Baleanu, D., Solving fractional optimal control problems within a Chebyshev-Legendre operational technique, Int. J. Control., 90, 6, 1230-1244 (2017) · Zbl 1370.49027
[45] Doha, E. H.; Bhrawy, A. H.; Baleanu, D.; Ezz-Eldien, S. S.; Hafez, R. M., An efficient numerical scheme based on the shifted orthonormal jacobi polynomials for solving fractional optimal control problems, Adv. Differ. Equ., 2015, 15, 1-17 (2015) · Zbl 1423.49018
[46] Kamocki, R., On the existence of optimal solutions to fractional optimal control problems, Appl. Math. Comput., 235, 94-104 (2014) · Zbl 1334.49010
[47] Heydari, M. H.; Hooshmandasl, M. R.; Ghaini, F. M.M.; Cattani, C., Wavelets method for solving fractional optimal control problems, Appl. Math. Comput., 286, 139-154 (2016) · Zbl 1410.49032
[48] Agrawal, O. P., A formulation and numerical scheme for fractional optimal control problems, J. Vib. Control., 13, 1291-1299 (2007) · Zbl 1229.49045
[49] Kamocki, R., Pontryagin maximum principle for fractional ordinary optimal control problems, Math. Methods Appl. Sci., 37, 1668-1686 (2014) · Zbl 1298.26023
[50] Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-eldien, S. S.; Abdelkawy, M. A., An accurate numerical technique for solving fractional optimal control problems, Proc. Romanian Acad. A., 16, 47-54 (2015)
[51] Tricaud, C.; Chen, Y. Q., An approximate method for numerically solving fractional order optimal control problems of general form, Comput. Math. Appl., 59, 1644-1655 (2010) · Zbl 1189.49045
[52] Tohidi, E.; Nik, H. S., A bessel collocation method for solving fractional optimal control problems, Appl. Math. Model., 39, 455-465 (2015) · Zbl 1432.49046
[53] Lotfi, A.; Yousefi, S. A.; Dehghan, M., Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the gauss quadrature rule, J. Comput. Appl. Math., 250, 143-160 (2013) · Zbl 1286.49030
[54] Heydari, M. H.; Avazzadeh, Z., A new wavelet method for variable-order fractional optimal control problems, Asian J. Control, 20, 5, 1804-1817 (2018) · Zbl 1407.93127
[55] Bhrawy, A. H.; Doha, E. H.; Machado, J. A.T.; Ezz-Eldien, S. S., An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index, Asian J. Control, 17, 6, 2389-2402 (2015) · Zbl 1341.49037
[56] Kreyszig, E., Introductory Functional Analysis with Applications (1978), John Wiley and Sons. Inc. · Zbl 0368.46014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.