Implementation of compressible porous-fluid coupling method in an aerodynamics and aeroacoustics code. I: Laminar flow. (English) Zbl 1433.76152

Summary: The problem of coupling compressible viscous flow in free stream and a porous medium into one solver is addressed in this work. A single-domain compressible Darcy-Forchheimer model extended from the Navier-Stokes equation is developed for this purpose. The set of governing equations accounting for mass conservation and momentum and energy balance is first presented for the coupling method, followed by implementation details within a finite-volume framework. Steady numerical simulations focus on two classical problems: porous plug flow and the Beavers and Joseph problem. Both are successfully performed, demonstrating the feasibility and capability of this approach. An unsteady problem of flow over a square porous cylinder is then modeled; and results are compared with those from the existing literature, demonstrating the accuracy of the method for unsteady cases.


76Q05 Hydro- and aero-acoustics
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76G25 General aerodynamics and subsonic flows
76S05 Flows in porous media; filtration; seepage


Full Text: DOI


[1] Shankar, B.; Kumar, J.; Shivakumara, I., Numerical investigation of electrohydrodynamic instability in a vertical porous layer, Appl. Math. Comput., 310, 15-39 (2017) · Zbl 1426.76697
[2] Hasan, A.; Foss, B.; Sagatun, S., Flow control of fluids through porous media, Appl. Math. Comput., 219, 7, 3323-3335 (2012) · Zbl 1309.76087
[3] Allan, F. M.; Kamel, M.; Mughrabi, T.; Hamdan, M., Infiltration of oil into porous sediments, Appl. Math. Comput., 177, 2, 659-664 (2006) · Zbl 1096.76055
[4] Choudhary, S.; Mahajan, A., Stability analysis of a couple-stress fluid saturating a porous medium with temperature and pressure dependent viscosity using a thermal non-equilibrium model, Appl. Math. Comput., 340, 15-30 (2019) · Zbl 1428.76206
[5] Beavers, G. S.; Joseph, D. D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 1, 197-207 (1967)
[6] Martin, A.; Zhang, H.; Tagavi, K. A., An introduction to the derivation of surface balance equations without the excruciating pain, Int. J. Heat Mass Transf., 115, 992-999 (2017)
[7] Weng, H.; Bailey, S. C.; Martin, A., Numerical study of iso-q sample geometric effects on charring ablative materials, Int. J. Heat Mass Transf., 80, 570-596 (2015)
[8] Layton, W. J.; Schieweck, F.; Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40, 6, 2195-2218 (2002) · Zbl 1037.76014
[9] Zhang, H.; Weng, H.; Martin, A., Simulation of flow-tube oxidation on the carbon preform of PICA, Proceedings of the Fifty-second Aerospace Sciences Meeting, AIAA Paper 2014-1209, 1209 (2014)
[13] Saffman, P. G., On the boundary condition at the surface of a porous medium, Stud. Appl. Math., 50, 2, 93-101 (1971) · Zbl 0271.76080
[14] Bars, M. L.; Worster, M. G., Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. Fluid Mech., 550, 149-173 (2006) · Zbl 1097.76066
[15] Ochoa-Tapia, J. A.; Whitaker, S., Momentum transfer at the boundary between a porous medium and a homogeneous fluid-I theoretical development, Int. J. Heat Mass Transf., 38, 14, 2635-2646 (1995) · Zbl 0923.76320
[16] Cieszko, M.; Kubik, J., Derivation of matching conditions at the contact surface between fluid-saturated porous solid and bulk fluid, Transp. Porous Media, 34, 1-3, 319-336 (1999)
[17] Salinger, A. G.; Aris, R.; Derby, J. J., Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains, Int. J. Heat Mass Transf., 18, 12, 1185-1209 (1994) · Zbl 0807.76039
[18] Gartling, D.; Hickox, C.; Givler, R., Simulation of coupled viscous and porous flow problems, Int. J. Comput. Fluid Dyn., 7, 1-2, 23-48 (1996) · Zbl 0879.76104
[19] Costa, V.; Oliveira, L.; Baliga, B.; Sousa, A., Simulation of coupled flows in adjacent porous and open domains using a control-volume finite-element method, Numer. Heat Transf. Part A Appl., 45, 7, 675-697 (2004)
[20] Betchen, L.; Straatman, A. G.; Thompson, B. E., A nonequilibrium finite-volume model for conjugate fluid/porous/solid domains, Numer. Heat Transf. Part A Appl., 49, 6, 543-565 (2006)
[21] DeGroot, C. T.; Straatman, A. G., A finite-volume model for fluid flow and nonequilibrium heat transfer in conjugate fluid – porous domains using general unstructured grids, Numer. Heat Transf. Part B Fundam., 60, 4, 252-277 (2011)
[22] Nordlund, M.; Stanic, M.; Kuczaj, A. K.; Frederix, E. M.; Geurts, B. J., Improved piso algorithms for modeling density varying flow in conjugate fluid – porous domains, J. Comput. Phys., 306, 199-215 (2016) · Zbl 1351.76120
[23] Stanic, M.; Nordlund, M.; Frederix, E.; Kuczaj, A. K.; Geurts, B. J., Evaluation of oscillation-free fluid – porous interface treatments for segregated finite volume flow solvers, Comput. Fluids, 131, 169-179 (2016) · Zbl 1390.76517
[25] Hao, L.; Cheng, P., Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method, Int. J. Heat Mass Transf., 53, 9-10, 1908-1913 (2010) · Zbl 1305.76105
[26] Chai, Z.; Huang, C.; Shi, B.; Guo, Z., A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media, Int. J. Heat Mass Transf., 98, 687-696 (2016)
[27] Breugem, W.; Boersma, B.; Uittenbogaard, R., The influence of wall permeability on turbulent channel flow, J. Fluid Mech., 562, 35-72 (2006) · Zbl 1157.76332
[28] Nield, D., Modelling high speed flow of a compressible fluid in a saturated porous medium, Transp. Porous Media, 14, 1, 85-88 (1994)
[29] Petrasch, J.; Meier, F.; Friess, H.; Steinfeld, A., Tomography based determination of permeability, Dupuit-Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics, Int. J. Heat Fluid Flow, 29, 1, 315-326 (2008)
[30] Younis, L.; Viskanta, R., Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam, Int. J. Heat Mass Transf., 36, 6, 1425-1434 (1993)
[31] Nield, D. A.; Bejan, A., Convection in Porous Media, 3 (2006), Springer · Zbl 1256.76004
[32] Mößner, M.; Radespiel, R., Implementation of flow through porous media into a compressible flow solver, Prceedings of the New Results in Numerical and Experimental Fluid Mechanics IX: Contributions to the Eighteenth STAB/DGLR Symposium, volume 124, 465 (2012), Springer Science & Business Media (2014): Springer Science & Business Media (2014) Stuttgart, Germany
[33] Wada, Y.; Liou, M.-S., An accurate and robust flux splitting scheme for shock and contact discontinuities, SIAM J. Sci. Comput., 18, 3, 633-657 (1997) · Zbl 0879.76064
[34] Chen, X.; Yu, P.; Winoto, S.; Low, H.-T., Numerical analysis for the flow past a porous square cylinder based on the stress-jump interfacial-conditions, Int. J. Numer. Methods Heat Fluid Flow, 18, 5, 635-655 (2008)
[36] de Lemos, M. J.; Silva, R. A., Turbulent flow over a layer of a highly permeable medium simulated with a diffusion-jump model for the interface, Int. J. Heat Mass Transf., 49, 3-4, 546-556 (2006) · Zbl 1189.76268
[37] Weiss, J. M.; Smith, W. A., Preconditioning applied to variable and constant density flows, AIAA J., 33, 11, 2050-2057 (1995) · Zbl 0849.76072
[39] Gabriel, E.; Fagg, G. E.; Bosilca, G.; Angskun, T.; Dongarra, J. J.; Squyres, J. M.; Sahay, V.; Kambadur, P.; Barrett, B.; Lumsdaine, A.; Castain, R. H.; Daniel, D. J.; Graham, R. L.; Woodall, T. S., Open MPI: Goals, concept, and design of a next generation MPI implementation, Proceedings of the Eleventh European PVM/MPI Users’ Group Meeting, 97-104 (2004)
[40] Chang, C.-H.; Liou, M. S., A robust and accurate approach to computing compressible multiphase flow: stratified flow model and ausm+-up scheme, J. Comput. Phys., 225, 1, 840-873 (2007) · Zbl 1192.76030
[41] Yunus, A. C.; Cimbala, J. M., Fluid mechanics fundamentals and applications, Proceedings of the International Edition, volume 185201, 600-657 (2006), McGraw Hill Publication
[42] Tang, T.; McDonough, J., A theoretical model for the porosity – permeability relationship, Int. J. Heat Mass Transf., 103, 984-996 (2016)
[43] Ergun, S.; Orning, A. A., Fluid flow through randomly packed columns and fluidized beds, Indust. Eng. Chem., 41, 6, 1179-1184 (1949)
[44] Bear, J.; Bachmat, Y., Introduction to Modeling of Transport Phenomena in Porous Media, 4 (2012), Springer Science & Business Media
[45] Das, M. K.; Mukherjee, P. P.; Muralidhar, K., Modeling Transport Phenomena in Porous Media with Applications (2018), Springer · Zbl 1416.76305
[46] Darcy, H., Les Fontaines Publiques de la Ville de Dijon: Exposition et Application (1856), Victor Dalmont
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.