×

Consensus tracking for nonlinear multi-agent systems with unknown disturbance by using model free adaptive iterative learning control. (English) Zbl 1433.93085

Summary: In this paper, a distributed disturbance-compensation based model free adaptive iterative learning control (MFAILC) algorithm is proposed to achieve the consensus tracking of nonlinear multi-agent systems (MAS) with unknown disturbance. Here, both fixed and iteration varying topologies are considered. A general dynamic linearization model with disturbance input is first proposed to each agent along the iteration axis for nonlinear MAS. Due to the existence of unknown disturbance, an online disturbance estimation algorithm is proposed to estimate actual disturbance only based on the input/output (I/O) measurement data. Then, a distributed MFAILC method with disturbance compensation is developed such that consensus tracking errors are convergent. Last, the effectiveness of the developed method can be illustrated from the simulation examples.

MSC:

93C70 Time-scale analysis and singular perturbations in control/observation systems
68M14 Distributed systems
93C73 Perturbations in control/observation systems
93A14 Decentralized systems
68T05 Learning and adaptive systems in artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] He, X.; Wang, Q.; Yu, W., Finite-time distributed cooperative attitude tracking control for multiple rigid spacecraft, Appl. Math. Comput., 256, 724-734 (2015) · Zbl 1338.70031
[2] Wang, H.; Li, Z.; Xiong, H., Robust \(h_∞\) attitude tracking control of a quadrotor UAV on SO(3) via variation-based linearization and interval matrix approach, ISA Trans., 87, 10-16 (2019)
[3] Ding, L.; Han, Q.; Wang, L.; Sindi, E., Distributed cooperative optimal control of DC microgrids with communication delays, IEEE Trans. Ind. Info, 14, 9, 3924-3935 (2018)
[4] Ren, W., On consensus algorithms for double-integrator dynamics, IEEE Trans. Autom. Contr., 53, 6, 1503-1509 (2008) · Zbl 1367.93567
[5] Olfati-Saber, R.; Murray, R., Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Contr., 49, 9, 1520-1533 (2004) · Zbl 1365.93301
[6] Huang, B.; Liu, L.; Zhang, H., Distributed optimal economic dispatch for microgrids considering communication delays, IEEE Trans. Syst. Man Cybern. Syst. (2019)
[7] Zhang, Y.; Tian, Y., Consentability and protocol design of multiagent systems with stochastic switching topology, Automatica, 45, 5, 1195-1201 (2009) · Zbl 1162.94431
[8] Wang, J.; Ru, T.; Xia, J.; Wei, Y.; Wang, Z., Finite-time synchronization for complex dynamic networks with semi-markov switching topologies: an \(h_∞\) event-triggered control scheme, Appl. Math. Comput., 356, 235-251 (2019) · Zbl 1428.93124
[9] Wang, J.; Hu, X.; Wei, Y.; Wang, Z., Sampled-data synchronization of semi-Markov jump complex dynamical networks subject to generalized dissipativity property, Appl. Math. Comput., 346, 853-864 (2019) · Zbl 1429.93011
[10] Chen, C.; Wen, G.; Liu, Y.; Wang, F., Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks, IEEE Trans. Neural Netw. Learn. Syst., 25, 6, 1217-1226 (2014)
[11] Wang, J.; Su, L.; Shen, H.; Wu, Z.; Park, J., Mixed \(h_∞\)/passive sampled-data synchronization control of complex dynamical networks with distributed coupling delay, J. Frankl. Inst., 94, 97-106 (2016)
[12] Fan, M.; Wu, Y., Global leader-following consensus of nonlinear multi-agent systems with unknown control directions and unknown external disturbances, Appl. Math. Comput., 331, 274-286 (2018) · Zbl 1427.93014
[13] Ding, L.; Han, Q.; Ge, X.; Zhang, X., An overview of recent advances in event-triggered consensus of multi-agent systems, IEEE Trans. Cybern., 48, 4, 1110-1123 (2018)
[14] Wang, Y.; Zheng, W.; Zhang, H., Dynamic event-based control of nonlinear stochastic systems, IEEE Trans. Autom. Contr., 62, 12, 6544-6551 (2017) · Zbl 1390.93847
[15] Ahn, H.; Moore, K.; Chen, Y., Trajectory-keeping in satellite formation flying via robust periodic learning control, Int. J. Robust Nonlinear Contr., 20, 14, 1655-1666 (2010) · Zbl 1204.93082
[16] Arimoto, S.; Kawamura, S.; Miyazaki, F., Bettering operation of robots by learning, J. Robot Syst., 1, 2, 123-140 (1984)
[17] Liu, S.; Wang, J.; Shen, D.; O’Regan, D., Iterative learning control for differential inclusions of parabolic type with noninstantaneous impulses, Appl. Math. Comput., 350, 48-59 (2019) · Zbl 1428.93052
[18] Yu, M.; Huang, D., Switching adaptive learning control for nonlinearly parameterized systems with disturbance of unknown periods, Int. J. Robust Nonlinear Contr., 25, 9, 1327-1337 (2015) · Zbl 1323.93035
[19] Yu, M.; Li, C., Robust adaptive iterative learning control for discrete-time nonlinear systems with time-iteration-varying parameters, IEEE Trans. Syst. Man Cybern. Syst., 47, 7, 1737-1745 (2017)
[20] Xu, J., A survey on iterative learning control for nonlinear systems, Int. J. Contr., 84, 7, 1275-1294 (2011) · Zbl 1227.93053
[21] Shi, X.; Shen, M., A new approach to feedback feed-forward iterative learning control with random packet dropouts, Appl. Math. Comput., 348, 399-412 (2019) · Zbl 1428.93132
[22] Ahn, H.; Chen, Y., Iterative learning control for multi-agent formation, Proceedings of the International Joint Congress Center (ICROS SICE), 3111-3116 (2009), Fukuoka: Fukuoka Japan
[23] Shi, J.; He, X.; Wang, Z.; Zhou, D., Iterative consensus for a class of second-order multi-agent systems, J. Int. Robot Syst., 73, 1-4, 655-664 (2014)
[24] Li, J.; Li, J., Adaptive iterative learning control for coordination of second-order multi-agent systems, Int. J. Robust Nonlinear Contr., 24, 18, 3282-3299 (2014) · Zbl 1302.93007
[25] Yang, S.; Xu, J.; Huang, D.; Tan, Y., Optimal iterative learning control design for multi-agent systems consensus tracking, Syst. Contr. Lett., 69, 80-89 (2014) · Zbl 1288.93011
[26] Meng, D.; Jia, Y.; Du, J.; Zhang, J., On iterative learning algorithms for the fromation control of nonlinear multi-agent systems, Automatica, 50, 1, 291-295 (2014) · Zbl 1298.93029
[27] Hou, Z.; Jin, S., Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems, IEEE Trans. Neura Netw. Learn. Syst., 22, 12, 2173-2188 (2011)
[28] Hou, Z.; Jin, S., A novel data-driven control approach for a class of discrete-time nonlinear systems, IEEE Trans. Contr. Syst. Technol., 19, 6, 1549-1558 (2011)
[29] Li, H.; Wang, Y.; Zhang, H., Data-driven-based event-triggered tracking control for non-linear systems with unknown disturbance, IET Control Theory Appl. (2019)
[30] Xu, D.; Jiang, B.; Shi, J., A novel model-free adaptive control design for multivariable industrial processes, IEEE Trans. Ind. Electron, 61, 11, 6391-6398 (2014)
[31] Xu, D.; Jiang, B.; Liu, F., Improved data driven model free adaptive constrained control for a solid oxide fuel cell, IET Control Theory Appl., 10, 12, 1412-1419 (2016)
[32] Bu, X.; Yu, Q.; Hou, Z.; Qian, W., Model free adaptive iterative learning consensus tracking control for a class of nonlinear multiagent systems, IEEE Trans. Syst. Man Cybern. Syst., 49, 4, 677-686 (2019)
[33] Chi, R.; Hou, Z., Dual-stage optimal iterative learning control for nonlinear non-affine discerte-time systems, Acta Autom. Sinica, 33, 10, 1061-1065 (2007) · Zbl 1164.93355
[34] Shen, H.; Li, F.; Wu, Z.; Park, J.; Sreeram, V., Fuzzy-model-based non-fragile control for nonlinear singularly perturbed systems with semi-markov jump parameters, IEEE Trans. Fuzzy Syst., 26, 6, 3428-3439 (2018)
[35] Wang, Y.; Zheng, L.; Zhang, H.; Zheng, W., Fuzzy observer-based repetitive tracking control for nonlinear systems, IEEE Trans. Fuzzy Syst. (2019)
[36] Shen, H.; Huo, S.; Cao, J.; Huang, T., Generalized state estimation for Markovian coupled networks under round-robin protocol and redundant channels, IEEE Trans. Cybern., 49, 4, 1292-1301 (2019)
[37] Sakthivel, R.; Saravanakumar, T.; Ma, Y.; Anthoni, S., Finite-time resilient reliable sampled-data control for fuzzy systems with randomly occurring uncertainties, Fuzzy Sets Syst., 329, 1-18 (2017) · Zbl 1381.93067
[38] Saravanakumar, T.; Sakthivel, R.; Selvaraj, P.; Anthoni, S., Dissipative analysis for discrete-time systems via fault-tolerant control against actuator failures, Complexity, 21, 579-592 (2016)
[39] Sakthivel, R.; Saravanakumar, T.; Kaviarasan, B.; Anthoni, S., Dissipativity based repetitive control for switched stochastic dynamical systems, Appl. Math. Comput., 291, 340-353 (2016) · Zbl 1410.93150
[40] Simba, K.; Bui, B.; Msukwa, M.; Uchiyama, N., Robust iterative learning contouring controller with disturbance observer for machine tool feed drives, ISA Trans., 75, 207-215 (2018)
[41] Li, S.; Yang, J., Robust autopilot design for bank-to-turn missiles using disturbance observers, IEEE Trans. Aerosp. Elect. Syst., 49, 5, 558-579 (2013)
[42] Bu, X.; Hou, Z.; Yu, F.; Fu, Z., Model free adaptive control with disturbance observer, Contr. Eng. Appl. Info, 4, 42-49 (2012)
[43] Rajagopal, R.; Wainwright, M., Network-based consensus averaging with general noisy channels, IEEE Trans. Signal Proc., 59, 1, 373-385 (2011) · Zbl 1392.94861
[44] Oliva, G.; Setola, R.; Hadjicostis, C., Distributed finite-time average-consensus with limited computational and storage capability, IEEE Trans. Contr. Netw. Syst., 4, 2, 380-391 (2017) · Zbl 1370.93025
[45] Yang, S.; Xu, J.; Li, X., Iterative learning control with input sharing for multi-agent consensus tracking, Syst. Contr. Lett., 94, 97-106 (2016) · Zbl 1344.93010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.