×

Refined equations of the sandwich shells theory with composite external layers and a transverse soft core at average bending. (English) Zbl 1434.74080

Summary: In the development of previously obtained results for the case of average bending, a refined geometrically nonlinear theory of static and dynamic deformation of sandwich plates and shells with a transversely soft core and external composite layers with low rigidity for transverse shears and transverse compression was constructed. It is based on the use of the refined Tymoshenko’s shear model for the carrier layers, taking into account lateral reduction, and for the transversally soft core, the simplified three-dimensional equations of the elasticity theory, which can be integrated along the transverse coordinate. The hypothesis of the similarity of the change laws of displacements across the thickness of the core during its static and dynamic deformation processes was adopted. When integrating the compiled equations of the elasticity theory to describe the stress-strain state, the two two-dimensional unknown functions are introduced that represent transverse shear stresses that are constant in thickness. Based on the generalized Lagrange and Ostrogradsky Hamilton variational principles for describing static and dynamic deformation processes with large indicators of the variability of the stress-strain state parameters, two-dimensional geometrically nonlinear equilibrium equations and general movements are constructed, which allow to reveal purely shear of buckling forms of the carrier layers during formation normal compressive stresses.

MSC:

74K25 Shells
74E30 Composite and mixture properties
74G60 Bifurcation and buckling
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] E. I. Grigolyuk, “Equations of sandwich shells with a light filler,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 1, 77-84 (1957). · Zbl 0093.39502
[2] E. I. Grigolyuk, “Finite deflections of sandwich shells with a rigid filler,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 1, 26-34 (1958). · Zbl 0111.36905
[3] Kh. M. Mushtari, “On the applicability of various theories of three-layer plates and shells,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk. Mekh. Mashinostr., No. 6, 163-165 (1960). · Zbl 0123.19801
[4] Kh. M. Mushtari, “To the general theory of shallow shells with filler,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk. Mekh. Mashinostr., No. 2, 24-29 (1961). · Zbl 0129.18401
[5] Paimushin, V. N.; Kholmogorov, S. A.; Badriev, I. B., Theoretical and experimental investigations of the formation mechanisms of residual deformations of fibrous layered structure composites, MATEC Web Conf., 129, 02042 (2017) · doi:10.1051/matecconf/201712902042
[6] Badriev, I. B.; Paimushin, V. N., Refined models of contact interaction of a thin plate with positioned on both sides deformable foundations, Lobachevskii J. Math., 38, 779-793 (2017) · Zbl 1457.74115 · doi:10.1134/S1995080217050055
[7] Paimushin, V. N.; Kholmogorov, S. A.; Badriev, I. B., Consistent equations of nonlinear multilayer shells theory in the quadratic approximation, Lobachevskii J. Math., 40, 349-363 (2019) · Zbl 1457.74132 · doi:10.1134/S1995080219030156
[8] Badriev, I. B.; Makarov, M. V.; Paimushin, V. N., Longitudinal and transverse bending by a cylindrical shape of the sandwich plate stiffened in the end sections by rigid bodies, IOP Conf. Ser.: Mater. Sci. Eng., 158, 012011 (2016) · doi:10.1088/1757-899X/158/1/012011
[9] Davydov, S. A.; Zemskov, A. V.; Tarlakovskii, D. V., An elastic half-space under the action of one-dimensional time-dependent diffusion perturbations, Lobachevskii J. Math., 36, 503-509 (2015) · doi:10.1134/S199508021504023X
[10] Solov’ev, S. I., Eigenvibrations of a beam with elastically attached load, Lobachevskii J. Math., 37, 597-609 (2016) · Zbl 1388.74063 · doi:10.1134/S1995080216050115
[11] Paimushin, V. N.; Galimov, N. K., On the stability of three-layer plates with a light filler during bending, Proceedings of the Workshop on the Theory of Shells, 5, 35-42 (1974)
[12] Paimushin, V. N.; Galimov, N. K., Axially symmetric bending and stability of three-layer circular plates with a low density filler under complex loading, 94-102 (1974), Saratov
[13] Paimushin, V. N.; Bobrov, S. N., Forms of stability loss of three-layer sheets and shells with external layers made of homogeneous or reinforced materials, Mech. Compos. Mater., 21, 64-69 (2017) · doi:10.1007/BF00611810
[14] Paimushin, V. N.; Orlov, Yu V., A problem on the stability of moment equilibrium of sandwich elements of structures in a refined statement, Izv. Vyssh.Uchebn. Zaved., Aviats. Tekh., 2, 22-26 (1990)
[15] Noor, A. K.; Burton, W. S.; Bert, Ch W., Computational models for sandwich panels and shells, Appl. Mech. Rev., 49, 3-16 (1996) · doi:10.1115/1.3101923
[16] Ivanov, V. A.; Paimushin, V. N., Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversal-soft core, Russ. Math., 38, 26-39 (1994) · Zbl 0833.73016
[17] Ivanov, V. A.; Paimushin, V. N.; Polyakova, T. V., Refined theory of the stability of three-layer structures (linearized equations of neutral equilibrium and elementary one-dimensional problems), Russ. Math., 39, 13-22 (1995) · Zbl 0842.73031
[18] Paimushin, V. N., Refined theory of the stability of multilayered structures (nonlinear equations for the precritical equilibrium of multilayered shells with transversally soft cores), Fundamental and Applied Problems in the Mechanics of Strained Media and Structures, 1, 44-56 (1993)
[19] Ivanov, V. A.; Paimushin, V. N., Stability of multilayered shallow shells with transversal-soft fillers, Mech. Compos. Mater., 30, 267-283 (1994) · doi:10.1007/BF00616212
[20] Paimushin, V. N., A stability theory of sandwich structural elements 1. Analysis of the current state and a refined classification of buckling forms, Mech. Compos. Mater., 35, 465-470 (1999) · doi:10.1007/BF02259468
[21] Paimushin, V. N., Theory of stability for three-layer plates and shells: stages of development, state-of-the-art, and prospects, Mech. Solids, 36, 127-137 (2001)
[22] Galimov, M. K.; Ivanov, V. A.; Paimushin, V. N., Problems of stability of the moment equilibrium of sandwich plates and shells and simulation of the core in a perturbed state, Proceedings of the 17th International Conference on Theory of Plates and Shells, Kazan, 1, 16-23 (1996)
[23] Rosen, B. W., Mechanics of composite strengthening, 37-75 (1965), Metals Park, Ohio
[24] Yu. M. Tarnopolsky and A. V. Roze, Features of the Calculation of Parts from Reinforced Plastics (Zinatne, Riga, 1969) [in Russian].
[25] Budiansky, B., Micromechanics, Comput. Struct., 16, 3-12 (1983) · Zbl 0498.73115 · doi:10.1016/0045-7949(83)90141-4
[26] Budiansky, B.; Fleck, N. A., Compressive failure of fibre composites, J. Mech. Phys. Solids, 71, 183-211 (1993) · doi:10.1016/0022-5096(93)90068-Q
[27] Naik, N. K.; Kumar Rajesh, S., Compressive strength of unidirectional composites: evaluation and comparison of prediction models, Compos. Struct., 46, 299-308 (1999) · doi:10.1016/S0263-8223(99)00098-7
[28] Ivanov, V. A.; Paimushin, V. N., A refined statement of dynamic problems of sandwich shells with transversely soft core and a numerical-analytical method of their solution, J. Appl. Mech. Tech. Phys., 36, 599-610 (1995) · Zbl 1074.74602 · doi:10.1007/BF02371282
[29] Paimushin, V. N.; Khusainov, V. R., A refined theory of three-layer plates and shells for studying dynamic processes of deformation of plates and shells with large variability factor, Mekh. Kompoz. Mater. Konstrukts., 7, 215-235 (2001)
[30] Paimushin, V. N.; vanov, V. A.; Khusainov, V. R., Analysis of equations and problems on free oscillations of a three-layer plate structurally symmetrical in thickness with a transversely-soft filler, Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., 4, 22-25 (2001)
[31] Ivanov, V. A.; Paimushin, V. N., Refinement of the equations of dynamics of multilayered shells with transversely soft cores, Izv. Akad. Nauk, Mekh. Tverd. Tela, 3, 142-152 (1995)
[32] Badriev, I. B.; Makarov, M. V.; Paimushin, V. N., Numerical investigation of a physically nonlinear problem of the longitudinal bending of the sandwich plate with a transversal-soft core, PNRPU Mech. Bull., 1, 39-51 (2017)
[33] Badriev, I. B.; Makarov, M. V.; Paimushin, V. N., Geometrically nonlinear problem of longitudinal and transverse bending of a sandwich plate with transversally soft core, Lobachevskii J. Math., 39, 448-457 (2018) · doi:10.1134/S1995080218030046
[34] V. V. Bolotin and Y. N. Novichkov, Mechanics of Laminated Constructions (Mashinostroenie, Moscow, 1980) [in Russian].
[35] Badriev, I. B.; Banderov, V. V.; Makarov, M. V., Mathematical simulation of the problem of the pre-critical sandwich plate bending in geometrically nonlinear one dimensional formulation, IOP Conf. Ser.: Mater. Sci. Eng., 208, 012002 (2017) · doi:10.1088/1757-899X/208/1/012002
[36] Badriev, I. B.; Bujanov, V. Y.; Makarov, M. V., Differential properties of the operator of the geometrically nonlinear problem of a sandwich plate bending, Lobachevskii J. Math., 40, 263-273 (2019) · Zbl 1484.74052 · doi:10.1134/S1995080219030041
[37] R. B. Rickards and G. A. Teters, Stability of Shells Made of Composite Materials (Zinatne, Riga, 1974) [in Russian].
[38] K. Z. Galimov, Fundamentals of the Nonlinear Theory of Thin Shells (Kazan. Gos. Univ., Kazan, 1975) [in Russian].
[39] Paimushin, V. N., Variational solution methods for the three-dimensional problems of conjugation of deformable bodies, Sov. Phys. Dokl., 28, 1070-1073 (1983)
[40] Paimushin, V. N.; Petrushenko, Yu Ya, Variational solution method for problems in the mechanics of three-dimensional composite bodies. Hamilton Ostrogradskii generalized variational principle, Soobshch. Akad. Nauk Gruz. SSR, 131, 130-135 (1988)
[41] V L. Berdichevsky, Variational Principles of Continuum Mechanics (Springer, Berlin, 2009). · Zbl 1183.49002 · doi:10.1007/978-3-540-88467-5
[42] K. Washizu, Variational Methods in Elasticity and Plasticity (Pergamon, New York, 1972). · Zbl 0164.26001
[43] Zegzhda, S. A.; Tovstik, P. E.; Yushkov, M. P., The Hamilton Ostrogradski generalized principle and its application for damping of oscillations, Dokl. Phys., 57, 447-450 (2012) · doi:10.1134/S1028335812110092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.