×

A scalable multigrid reduction framework for multiphase poromechanics of heterogeneous media. (English) Zbl 1435.65153

Summary: Simulation of multiphase poromechanics involves solving a multiphysics problem in which multiphase flow and transport are tightly coupled with the porous medium deformation. To capture this dynamic interplay, fully implicit methods, also known as monolithic approaches, are usually preferred. The main bottleneck of a monolithic approach is that it requires solution of large linear systems that result from the discretization and linearization of the governing balance equations. Because such systems are nonsymmetric, indefinite, and highly ill-conditioned, preconditioning is critical for fast convergence. Recently, most efforts in designing efficient preconditioners for multiphase poromechanics have been dominated by physics-based strategies. Current state-of-the-art “black-box” solvers such as algebraic multigrid (AMG) are ineffective because they cannot effectively capture the strong coupling between the mechanics and the flow subproblems, as well as the coupling inherent in the multiphase flow and transport process. In this work, we develop an algebraic framework based on multigrid reduction (MGR) that is suited for tightly coupled systems of PDEs. Using this framework, the decoupling between the equations is done algebraically through defining appropriate interpolation and restriction operators. One can then employ existing solvers for each of the decoupled blocks or design a new solver based on knowledge of the physics. We demonstrate the applicability of our framework when used as a “black-box” solver for multiphase poromechanics. We show that the framework is flexible to accommodate a wide range of scenarios, as well as efficient and scalable for large problems.

MSC:

65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76T99 Multiphase and multicomponent flows
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J. H. Adler, F. J. Gaspar, X. Hu, C. Rodrigo, and L. T. Zikatanov, Robust block preconditioners for Biot’s model, in Domain Decomposition Methods in Science and Engineering XXIV. DD 2017, P. E. Bjørstad, S. C. Brenner, L. Halpern, H. H. Kim, R. Kornhuber, T. Rahman, and O. B. Widlund, eds., Lect. Notes Comput. Sci. Eng. 125, Springer, Cham, 2018, pp. 3-16, https://doi.org/10.1007/978-3-319-93873-8_1. · Zbl 1442.65342
[2] K. Aziz and A. Settari, Petroleum Reservoir Simulation, Elsevier Applied Science Publishers, London, UK, 1979.
[3] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, Multigrid smoothers for ultraparallel computing, SIAM J. Sci. Comput., 33 (2011), pp. 2864-2887, https://doi.org/10.1137/100798806. · Zbl 1237.65032
[4] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II-A general-purpose object-oriented finite element library, ACM Trans. Math. Software, 33 (2007), 24, https://doi.org/10.1145/1268776.1268779. · Zbl 1365.65248
[5] L. Bergamaschi, M. Ferronato, and G. Gambolati, Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 2647-2656, https://doi.org/10.1016/j.cma.2007.01.013. · Zbl 1173.76330
[6] L. Bergamaschi and Á. Martínez, RMCP: Relaxed mixed constraint preconditioners for saddle point linear systems arising in geomechanics, Comput. Methods Appl. Mech. Engrg., 221-222 (2012), pp. 54-62, https://doi.org/10.1016/j.cma.2012.02.004. · Zbl 1253.74032
[7] Q. M. Bui, H. C. Elman, and J. D. Moulton, Algebraic multigrid preconditioners for multiphase flow in porous media, SIAM J. Sci. Comput., 39 (2017), pp. S662-S680, https://doi.org/10.1137/16M1082652. · Zbl 1392.65024
[8] Q. M. Bui, L. Wang, and D. Osei-Kuffuor, Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions, Adv. Water Resour., 114 (2018), pp. 19-28, https://doi.org/10.1016/j.advwatres.2018.01.027.
[9] J. T. Camargo, J. A. White, and R. I. Borja, A Macroelement Stabilization for Multiphase Poromechanics, preprint, 2019, https://arxiv.org/abs/1909.08590v1. · Zbl 1460.65118
[10] H. Cao, H. A. Tchelepi, J. R. Wallis, and H. E. Yardumian, Parallel scalable unstructured CPR-type linear solver for reservoir simulation, in Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, 2005, https://doi.org/10.2118/96809-MS.
[11] E. Chow and A. Patel, Fine-grained parallel incomplete LU factorization, SIAM J. Sci. Comput., 37 (2015), pp. C169-C193, https://doi.org/10.1137/140968896. · Zbl 1320.65048
[12] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations, SIAM J. Sci. Comput., 19 (1998), pp. 995-1023, https://doi.org/10.1137/s1064827594270415. · Zbl 0922.65034
[13] M. A. Christie and M. J. Blunt, Tenth SPE Comparative Solution Project: A comparison of upscaling techniques, SPE Reserv. Eval. Eng., 4 (2001), pp. 308-317, https://doi.org/10.2118/72469-PA.
[14] O. Coussy, Poromechanics, Wiley, Chichester, UK, 2004.
[15] H. De Sterck, U. M. Yang, and J. J. Heys, Reducing complexity in parallel algebraic multigrid preconditioners, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 1019-1039, https://doi.org/10.1137/040615729. · Zbl 1102.65034
[16] R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635-C661, https://doi.org/10.1137/130944230. · Zbl 1310.65115
[17] R. D. Falgout, T. A. Manteuffel, B. O’Neill, and J. B. Schroder, Multigrid reduction in time for nonlinear parabolic problems: A case study, SIAM J. Sci. Comput., 39 (2017), pp. S298-S322, https://doi.org/10.1137/16M1082330. · Zbl 1395.65066
[18] R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in Computational Science — ICCS 2002, P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, and J. J. Dongarra, eds., Lecture Notes in Comput. Sci. 2331, Springer, Berlin, Heidelberg, 2002, pp. 632-641, https://doi.org/10.1007/3-540-47789-6_66. · Zbl 1056.65046
[19] M. Ferronato, C. Janna, and G. Pini, A generalized Block FSAI preconditioner for nonsymmetric linear systems, J. Comput. Appl. Math., 256 (2014), pp. 230-241, https://doi.org/10.1016/j.cam.2013.07.049. · Zbl 1314.65044
[20] T. T. Garipov, M. Karimi-Fard, and H. A. Tchelepi, Discrete fracture model for coupled flow and geomechanics, Comput. Geosci., 20 (2016), pp. 149-160, https://doi.org/10.1007/s10596-015-9554-z. · Zbl 1392.76079
[21] S. Gries, K. Stüben, G. L. Brown, D. Chen, and D. A. Collins, Preconditioning for efficiently applying algebraic multigrid in fully implicit reservoir simulations, SPE J., 19 (2014), pp. 726-736, https://doi.org/10.2118/163608-PA.
[22] M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM J. Sci. Comput., 18 (1997), pp. 838-853, https://doi.org/10.1137/s1064827594276552. · Zbl 0872.65031
[23] J. B. Haga, H. Osmes, and H. P. Langtangen, On the causes of pressure oscillations in low-permeable and low-compressible porous media, Int. J. Numer. Anal. Methods Geomech., 36 (2012), pp. 1507-1522, https://doi.org/10.1002/nag.1062.
[24] J. B. Haga, H. Osmes, and H. P. Langtangen, A parallel block preconditioner for large-scale poroelasticity with highly heterogeneous material parameters, Comput. Geosci., 16 (2012), pp. 723-734, https://doi.org/10.1007/s10596-012-9284-4.
[25] V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41 (2002), pp. 155-177, https://doi.org/10.1016/S0168-9274(01)00115-5. · Zbl 0995.65128
[26] N. Kechkar and D. J. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem, Math. Comp., 58 (1992), pp. 1-10, https://doi.org/10.1090/S0025-5718-1992-1106973-X. · Zbl 0738.76040
[27] J. Kim, H. A. Tchelepi, and R. Juanes, Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics, SPE J., 16 (2011), pp. 249-262, https://doi.org/10.2118/119084-PA. · Zbl 1228.74106
[28] J. Kim, H. A. Tchelepi, and R. Juanes, Rigorous coupling of geomechanics and multiphase flow with strong capillarity, SPE J., 18 (2013), pp. 1123-1139, https://doi.org/10.2118/141268-PA.
[29] S. Lacroix, Yu. Vassilevski, J. Wheeler, and M. Wheeler, Iterative solution methods for modeling multiphase flow in porous media fully implicitly, SIAM J. Sci. Comput., 25 (2003), pp. 905-926, https://doi.org/10.1137/s106482750240443x. · Zbl 1163.65310
[30] J. J. Lee, K.-A. Mardal, and R. Winther, Parameter-robust discretization and preconditioning of Biot’s consolidation model, SIAM J. Sci. Comput., 39 (2017), pp. A1-A24, https://doi.org/10.1137/15m1029473. · Zbl 1381.76183
[31] R. W. Lewis and B. A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd ed., Wiley, Chichester, UK, 1998. · Zbl 0935.74004
[32] H. Liu, K. Wang, and Z. Chen, A family of constrained pressure residual preconditioners for parallel reservoir simulations, Numer. Linear Algebra Appl., 23 (2016), pp. 120-146, https://doi.org/10.1002/nla.2017. · Zbl 1413.65045
[33] A. Mikelić and M. F. Wheeler, Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17 (2013), pp. 455-461, https://doi.org/10.1007/s10596-012-9318-y. · Zbl 1392.35235
[34] D. W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulation, SPE J., 18 (1978), pp. 183-194, https://doi.org/10.2118/6893-PA.
[35] J.-H. Prévost, Two-way coupling in reservoir-geomechanical models: Vertex-centered Galerkin geomechanical model cell-centered and vertex-centered finite volume reservoir models, Internat. J. Numer. Meth. Engrg., 98 (2014), pp. 612-624, https://doi.org/10.1002/nme.4657. · Zbl 1352.86002
[36] M. Ries and U. Trottenberg, MGR-Ein blitzschneller elliptischer Löser, Preprint 277 SBF 72, Universität Bonn, 1979.
[37] M. Ries, U. Trottenberg, and G. Winter, A note on MGR methods, Linear Algebra Appl., 49 (1983), pp. 1-26, https://doi.org/10.1016/0024-3795(83)90091-5. · Zbl 0515.65070
[38] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869, https://doi.org/10.1137/0907058. · Zbl 0599.65018
[39] R. Scheichl, R. Masson, and J. Wendebourg, Decoupling and block preconditioning for sedimentary basin simulations, Comput. Geosci., 7 (2003), pp. 295-318, https://doi.org/10.1023/b:comg.0000005244.61636.4e. · Zbl 1076.76070
[40] A. Settari and F. M. Mourits, A coupled reservoir and geomechanical simulation system, SPE J., 3 (1998), pp. 219-226, https://doi.org/10.2118/50939-PA.
[41] R. R. Settgast, P. Fu, S. D. C. Walsh, J. A. White, C. Annavarapu, and F. J. Ryerson, A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions, Int. J. Numer. Anal. Methods Geomech., 41 (2017), pp. 627-653, https://doi.org/10.1002/nag.2557.
[42] K. Stüben, A review of algebraic multigrid, J. Comput. Appl. Math., 128 (2001), pp. 281-309, https://doi.org/10.1016/S0377-0427(00)00516-1. · Zbl 0979.65111
[43] K. Stüben, T. Clees, H. Klie, B. Lu, and M. F. Wheeler, Algebraic multigrid methods (AMG) for the efficient solution of fully implicit formulations in reservoir simulation, in Proceedings of the SPE Reservoir Simulation Symposium, Houston, TX, 2007, https://doi.org/10.2118/105832-MS.
[44] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid, Academic Press, Orlando, FL, 2001. · Zbl 0976.65106
[45] J. R. Wallis, Incomplete Gaussian elimination as a preconditioning for generalized conjugate gradient acceleration, in Proceedings of the SPE Reservoir Simulation Symposium, San Francisco, CA, 1983, https://doi.org/10.2118/12265-MS.
[46] J. R. Wallis, R. P. Kendall, and T. E. Little, Constrained residual acceleration of conjugate residual methods, in Proceedings of the SPE Reservoir Simulation Symposium, Dallas, TX, 1985, https://doi.org/10.2118/13536-MS.
[47] L. Wang, D. Osei-Kuffuor, R. D. Falgout, I. D. Mishev, and J. Li, Multigrid reduction for coupled flow problems with application to reservoir simulation, in Proceedings of the SPE Reservoir Simulation Conference, Montgomery, TX, 2017, https://doi.org/10.2118/182723-MS.
[48] J. A. White and R. I. Borja, Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics, Comput. Geosci., 15 (2011), pp. 647-659, https://doi.org/10.1007/s10596-011-9233-7. · Zbl 1367.76034
[49] J. A. White, N. Castelletto, S. Klevtsov, Q. M. Bui, D. Osei-Kuffuor, and H. A. Tchelepi, A two-stage preconditioner for multiphase poromechanics in reservoir simulation, Comput. Methods Appl. Mech. Engrg., 357 (2019), 112575, https://doi.org/10.1016/j.cma.2019.112575. · Zbl 1442.76118
[50] J. A. White, N. Castelletto, and H. A. Tchelepi, Block-partitioned solvers for coupled poromechanics: A unified framework, Comput. Methods Appl. Mech. Engrg., 303 (2016), pp. 55-74, https://doi.org/10.1016/j.cma.2016.01.008. · Zbl 1425.74497
[51] Y. Zhou, Y. Jiang, and H. A. Tchelepi, A scalable multistage linear solver for reservoir models with multisegment wells, Comput. Geosci., 17 (2013), pp. 197-216, https://doi.org/10.1007/s10596-012-9324-0. · Zbl 1382.86007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.