×

A survey of certain Euclidean number fields. (English) Zbl 1436.11127

Chakraborty, Kalyan (ed.) et al., Class groups of number fields and related topics. Collected papers presented at the first international conference, ICCGNFRT, Harish-Chandra Research Institute, Allahabad, India, September 4–7, 2017. Singapore: Springer. 57-65 (2020).
Summary: In this short note, we give a brief survey of known results and recent developments on Euclidean quadratic fields and cyclic cubic fields.
For the entire collection see [Zbl 1444.11004].

MSC:

11R04 Algebraic numbers; rings of algebraic integers
11A05 Multiplicative structure; Euclidean algorithm; greatest common divisors
11R16 Cubic and quartic extensions
11-02 Research exposition (monographs, survey articles) pertaining to number theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H.W. Lenstra Jr., On Artin’s conjecture and Euclid’s algorithm. Inven. Math. 42, 201-224 (1977) · Zbl 0362.12012
[2] S. Alaca, K.S. Williams, Introductory Algebraic Number Theory (Cambridge University Press, 2003) · Zbl 1035.11001
[3] J.W.S. Cassels, Yet another proof of Minkowskis theorem on the product of two inhomogeneous linear forms, in Proceedings of the Cambridge Philosophical Society, vol. 49 (1953), pp. 365-366 · Zbl 0051.28302
[4] P. Erdös, Ch. Ko, Note on the Euclidean algorithm. J. London Math. Soc. 13, 3-8 (1938) · JFM 64.0138.02
[5] H. Loo-Keng, On the distribution of quadratic nonresidues and the Euclidean algorithm in real quadratic fields. Trans. Amer. Math. Soc. 56, 537-546 (1944) · Zbl 0061.05902
[6] H. Chatland, H. Davenport, Euclid’s algorithm in quadratic number fields. Canad. J. Math. 2, 289-296 (1950) · Zbl 0037.30802
[7] D.A. Clark, A quadratic field which is Euclidean but not norm-Euclidean. Manuscripta Mathematica 83, 327-330 (1994) · Zbl 0817.11047
[8] T. Motzkin, The Euclidean algorithm, Bull. Am. Math. Soc. 55(12), 1142-1146 (1949) · Zbl 0035.30302
[9] P.J. Weinberger, On Euclidean rings of algebraic integers, in Proceedings of Symposia in Pure Mathematics, Analytic Number Theory, AMS, vol. 24 (1973), pp. 321-332
[10] R. Gupta, M. Ram Murty, V. Kumar Murty, The Euclidean algorithm for S-integers in number theory, in CMS Conference on Proceedings of the American Mathematical Society (Montreal, June 1985), vol. 7 (1987), pp. 189-201
[11] D.A. Clark, M. Ram Murty, The Euclidean algorithm for Galois extensions. J. für die reine und angewandte Mathematik. 459(1995), 151-162 · Zbl 0814.11049
[12] M. Harper, M. Ram Murty Euclidean rings of algebraic integers. Canad. J. Math. 56(1), 71-76 (2004) · Zbl 1048.11080
[13] M. Harper, \( \mathbb{Z}[\sqrt{14}]\) is Euclidean. Canad. J. Math. 56(1), 55-70 (2004) · Zbl 1048.11079
[14] M. Ram Murty, K. Srinivas, M. Subramani, Admissible primes and Euclidean quadratic fields, J. Ramanujan Math. Soc. 33(2), 135-147 (2018) · Zbl 1425.11168
[15] H. Heilbronn, On Euclid’s algorithm in cubic self-conjugate fields, in Proceedings of the Cambridge Philosophical Society, vol. 46 (1950), pp. 377-382 · Zbl 0036.30101
[16] J.R. Smith, On Euclids algorithm in some cyclic cubic fields. J. London Math. Soc. 44, 577-582 (1969) · Zbl 0175.04501
[17] K. Srinivas, M. Subramani, A note on Euclidean cyclic cubic fields. J. Ramanujan Math. Soc. 33(2), 125-133 (2018) · Zbl 1425.11167
[18] F.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.