×

A clusterwise center and range regression model for interval-valued data. (English) Zbl 1436.62371

Lechevallier, Yves (ed.) et al., Proceedings of COMPSTAT’2010. 19th international conference on computational statistics, Paris, France, August 22–27, 2010. Keynote, invited and contributed papers. Heidelberg: Physica Verlag. 461-468 (2010).
Summary: This paper aims to adapt clusterwise regression to interval-valued data. The proposed approach combines the dynamic clustering algorithm with the center and range regression method for interval-valued data in order to identify both the partition of the data and the relevant regression models, one for each cluster. Experiments with a car interval-valued data set show the usefulness of combining both approaches.
For the entire collection see [Zbl 1202.62001].

MSC:

62J99 Linear inference, regression
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62-08 Computational methods for problems pertaining to statistics
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] BILLARD, L. and DIDAY, E. (2000): Regression Analysis for Interval-Valued Data. In: H.A.L. Kiers, J.P. Rasson, P.J.F. Groenen and M. Schader (Eds.): Data Analysis, Classification and Related Methods. Springer, Berlin, 369-374. · Zbl 1026.62073
[2] BILLARD, L. and DIDAY, E. (2007): Symbolic Data Analysis: Conceptual Statistics and Data Mining. Wiley-Interscience, San Francisco. · Zbl 1117.62002
[3] BILLARD, L. and DIDAY, E. (2002): Symbolic Regression Analysis. In: K. Jajuga, A. Sokolowski and H.-H. Bock (Eds.): Classification, Clustering, and Data Analysis. Recent Advances and Applications. Springer, Berlin, 281-288. · Zbl 1185.62129
[4] BOCK, H.-H. (1989): The equivalence of two extremal problems and its application to the iterative classification of multivariate data. Lecture note. Mathematisches Forschungsinstitut Oberwolfach.
[5] BREIMAN, L. (1996): Stacked Regressions. Machine Learning 24, 49-64. · Zbl 0849.68104
[6] CAPAROSSI, G. and HANSEN, P. (2007): Variable Neighborhood Search for Least Squares Clusterwise Regression. Les Cahiers du GERAD, G 2005-61. HEC Montréal
[7] CHARLES, C. (1977): Régression typologique et reconnaissance des formes. Thèse de doctorat Université Paris IX.
[8] DIDAY, E. and SIMON, J.C. (1976): Clustering analysis. In: K.S. Fu (Eds.): Digital Pattern Classification. Springer, Berlin, 47-94. · Zbl 0331.62043
[9] D’URSO, P. and SANTORO, A. (2006): Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable. Computational Statistics and Data Analysis, 51 (1): 287-313. · Zbl 1157.62461
[10] GONZÁLEZ-RODRIGUES, G., BLANCO, A., CORRAL, N. and COLUBI, A. (2007): Least squares estimation of linear regression models for convex compact random sets. Advances in Data Analysis and Classification 1, 67-81. · Zbl 1131.62058
[11] HENNIG, C. (2000): Identifiability of models for clusterwise linear regression. J. Classification 17 (2), 273-296. · Zbl 1017.62058
[12] LIMA NETO, E. A. and DE CARVALHO, F.A.T. (2008): Centre and Range method for fitting a linear regression model to symbolic interval data. Computational Statistics and Data Analysis, 52 (3): 1500-1515. · Zbl 1452.62493
[13] PLAIA, A. (2001): On the number of clusters in clusterwise linear regression. In: Xth International Symposium on Applied Stochastic Models and Data Analysis, Proceedings, vol. 2. Compiegne, France, 847-852.
[14] SPAETH, H. (1979): Clusterwise Linear Regression. Computing 22 (4), 367-373. · Zbl 0387.65028
[15] WAYNE, S. · Zbl 0692.62052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.