×

A novel fast direct solver for 3D elastic inclusion problems with the isogeometric boundary element method. (English) Zbl 1437.65218

Summary: We present a novel fast direct solver to simulate 3D large scale elastic inclusion problems. The method combines the isogeometric analysis boundary element method (IGABEM) and the hierarchical off-diagonal low-rank (HODLR) matrix based on non-uniform rational B-splines (NURBS). Hence the 3D geometric surface can be accurately described by the bivariate NURBS basis functions. In order to solve the large scale problems, a stable accelerated algorithm is used to approximate the off-diagonal submatrices by low-rank matrices. Based on the accelerated algorithm, a hybrid approximation algorithm consisting of singular value decomposition (SVD) and adaptive cross approximation (ACA) is proposed to solve the 3D elastic inclusion problems. The validity and accuracy of the method are verified by testing the four methods. Among the numerical results obtained from the four methods, the method proposed in this paper uses less CPU time and storage space to obtain accurate results.

MSC:

65N38 Boundary element methods for boundary value problems involving PDEs
74S15 Boundary element methods applied to problems in solid mechanics
65D07 Numerical computation using splines
65F20 Numerical solutions to overdetermined systems, pseudoinverses
74B99 Elastic materials
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 241, 376-396 (1957) · Zbl 0079.39606
[2] Muskhelishvili, N. I., Some Basic Problems of Mathematics Theory of Elasticity (1953), Noordhorff: Noordhorff Groningen · Zbl 0052.41402
[3] Zhang, J.; Katsube, N., A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions, Finite Elem. Anal. Des., 19, 1-2, 45-55 (1995) · Zbl 0875.73294
[4] Nakamura, T.; Suresh, S., Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites, Acta Metall. Mater., 41, 6, 1665-1681 (1993)
[5] Dong, C. Y.; Lo, S. H.; Cheung, Y. K., Numerical solution of 3D elastostatic inclusion problems using the volume integral equation method, Comput. Methods Appl. Mech. Engrg., 192, 1-2, 95-106 (2003) · Zbl 1083.74585
[6] Dong, C. Y.; Lee, K. Y., A new integral equation formulation of two-dimensional inclusion-crack problems, Int. J. Solids Struct., 42, 18-19, 5010-5020 (2005) · Zbl 1119.74546
[7] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[8] Simpson, R. N.; Bordas, S. P.A.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech. Engrg., 209-212, 87-100 (2012) · Zbl 1243.74193
[9] Mantzaflaris, A.; Jüttler, B.; Khoromskij, B. N.; Langer, U., Low rank tensor methods in Galerkin-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 316, 1062-1085 (2017) · Zbl 1439.65185
[10] Rokhlin, V., Rapid solution of integral-equations of classical potential-theory, J. Comput. Phys., 60, 2, 187-207 (1985) · Zbl 0629.65122
[11] Coifman, R.; Rokhlin, V.; Wandzura, S., The fast multipole method for the wave equation: A pedestrian prescription, IEEE Antennas Propag. Mag., 35, 3, 7-12 (1993)
[12] Hackbusch, W.; Nowak, Z., On the fast matrix multiplication in the boundary element method by panel clustering, Numer. Math., 54, 4, 463-491 (1989) · Zbl 0641.65038
[13] Mallat, S., A theory for multiresolution signal decomposition: The wavelet representation, IEEE Trans. Pattern Anal., 11, 7, 674-693 (1989) · Zbl 0709.94650
[14] Hackbusch, W., A sparse matrix arithmetic based on H-matrices, Computing, 62, 89-108 (1999) · Zbl 0927.65063
[15] Marussig, B.; Zechner, J.; Beer, G.; Fries, T. P., Fast isogeometric boundary element method based on independent field approximation, Comput. Methods Appl. Mech. Engrg., 284, 458-488 (2015) · Zbl 1423.74101
[16] Hackbusch, W.; Khoromskij, B. N., A sparse H-matrix arithmetic, Computing, 64, 21-47 (2000) · Zbl 0962.65029
[17] Bebendorf, M., Approximation of boundary element matrices, Numer. Math., 86, 565-589 (2000) · Zbl 0966.65094
[18] Bebendorf, M.; Rjasanow, S., Adaptive low-rank approximation of collocation matrices, Computing, 70, 1-24 (2003) · Zbl 1068.41052
[19] Lai, J.; Ambikasaran, S.; Greengard, L. F., A fast direct solver for high frequency scattering from a large cavity in two dimensions, SIAM J. Sci. Comput., 36, 887-903 (2014), 2014 · Zbl 1319.78008
[20] Huang, S.; Liu, Y. J., A new fast direct solver for the boundary element method, Comput. Mech., 60, 1-14 (2017)
[21] Kong, W. K.; Bremer, J.; Rokhlin, V., An adaptive fast direct solver for boundary integral equations in two dimensions, Appl. Comput. Harmon. Anal., 31, 346-369 (2011) · Zbl 1227.65118
[22] Martinsson, P. G.; Rokhlin, V., A fast direct solver for boundary integral equations in two dimensions, J. Comput. Phys., 205, 1-23 (2005) · Zbl 1078.65112
[23] Greengard, L.; Gueyffier, D.; Martinsson, P. G.; Rokhlin, V., Fast direct solvers for integral equations in complex three-dimensional domains, Acta Numer., 18, 1-23 (2009)
[24] Sun, F. L.; Dong, C. Y.; Wu, Y. H.; Gong, Y. P., Fast direct isogeometric boundary element method for 3D potential problems based on HODLR matrix, Appl. Math. Comput., 359, 17-23 (2019) · Zbl 1429.65290
[25] Sherman, J.; Morrison, W. J., Adjustment of an inverse matrix corresponding to a change in one element of a given matrix, Ann. Math. Stat., 21, 124-127 (1950) · Zbl 0037.00901
[26] Gao, X. W., An effective method for numerical evaluation of general 2D and 3D high order singular boundary integrals, Comput. Methods Appl. Mech. Engrg., 199, 2856-2864 (2010) · Zbl 1231.65236
[27] Aimi, A.; Calabrò, F.; Diligenti, M.; Sampoli, M. L.; Sangalli, G.; Sestini, A., Efficient assembly based on B-spline tailored quadrature rules for the IgA-SGBEM, Comput. Methods Appl. Mech. Engrg., 331, 327-342 (2018) · Zbl 1439.65207
[28] Calabrò, F.; Falini, A.; Sampoli, M. L.; Sestini, A., Efficient quadrature rules based on spline quasi-interpolation for application to IGA-BEMs, J. Comput. Appl. Math., 338, 153-167 (2018) · Zbl 1503.65054
[29] Hiemstra, R. R.; Sangalli, G.; Tani, M.; Calabrò, F.; Hughes, T. J.R., Fast formation and assembly of finite element matrices with application to isogeometric linear elasticity, Comput. Methods Appl. Mech. Engrg., 355, 234-260 (2019) · Zbl 1441.74244
[30] Gong, Y. P.; Dong, C. Y.; Qin, X. C., An isogeometric boundary element method for three dimensional potential problems, J. Comput. Appl. Math., 313, 454-468 (2017) · Zbl 1353.65129
[31] Brebbia, C. A.; Dominguez, J., Boundary Elements—An Introduction Course (1992), Computational Mechanics Publications: Computational Mechanics Publications New York · Zbl 0780.73002
[32] Leite, L. G.S.; Coda, H. B.; Venturini, W. S., Two-dimensional solids reinforced by thin bars using the boundary element method, Eng. Anal. Bound. Elem., 27, 193-201 (2003) · Zbl 1027.74515
[33] Auricchio, F.; Veiga, L. B.D.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 11, 2075-2107 (2010) · Zbl 1226.65091
[34] Voronin, S.; Martinsson, P. G., RSVDPACK: An implementation of randomized algorithms for computing the singular value, interpolative, and CUR decompositions of matrices on multi-core and GPU architectures (2016), arXiv:1502.05366v3
[35] Bebendorf, M., Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems (2008), Springer · Zbl 1151.65090
[36] Gao, X. W.; Davies, T. G., Adaptive integration in elasto-plastic boundary element analysis, J. Chin. Inst. Eng., 23, 3, 349-356 (2000)
[37] Gong, Y. P.; Dong, C. Y., An isogeometric boundary element method using adaptive integral method for 3D potential problems, J. Comput. Appl. Math., 319, 141-158 (2017) · Zbl 1360.65291
[38] Mustoe, G. G.W., Advanced integration schemes over boundary elements and volume cells for two- and three-dimensional non-linear analysis, (Developments in Boundary Element Methods-3 (1984), Elsevier: Elsevier London), 213-270 · Zbl 0547.73059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.