×

Attractors of nonlinear Hamiltonian partial differential equations. (English. Russian original) Zbl 1439.35001

Russ. Math. Surv. 75, No. 1, 1-87 (2020); translation from Usp. Mat. Nauk 75, No. 1, 3-94 (2020).

MSC:

35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35B41 Attractors
35B40 Asymptotic behavior of solutions to PDEs
35C08 Soliton solutions
35L71 Second-order semilinear hyperbolic equations
35B06 Symmetries, invariants, etc. in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] M. Abraham 1902 Prinzipien der Dynamik des Elektrons Phys. Z.4 57-63 · JFM 33.0875.01
[2] M. Abraham 1905 Theorie der Elektrizität 2 Elektromagnetische Theorie der Strahlung B. G. Teubner, Leipzig 404 pp.
[3] R. K. Adair and E. C. Fowler 1963 Strange particles Intersci. Publ. John Wiley & Sons, New York-London viii+151 pp.
[4] R. Adami, D. Noja, and C. Ortoleva 2013 Orbital and asymptotic stability for standing waves of a nonlinear Schrödinger equation with concentrated nonlinearity in dimension three J. Math. Phys.54 1 013501 33 pp. · Zbl 1322.35122
[5] S. Agmon 1975 Spectral properties of Schrödinger operators and scattering theory Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)2 2 151-218 · Zbl 0315.47007
[6] S. Albeverio and R. Figari 2018 Quantum fields and point interactions Rend. Mat. Appl. (7)39 2 161-180 · Zbl 1414.81267
[7] L. Andersson and P. Blue 2015 Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior J. Hyperbolic Differ. Equ.12 4 689-743 · Zbl 1338.83094
[8] А. В. Бабин, М. И. Вишик 1989 Аттракторы эволюционных уравнений Наука, M. 296 pp.
[9] English transl. A. V. Babin and M. I. Vishik 1992 Attractors of evolution equations Stud. Math. Appl. 25 North-Holland Publishing Co., Amsterdam x+532 pp.
[10] V. Bach, T. Chen, J. Faupin, J. Fröhlich, and I. M. Sigal 2013 Effective dynamics of an electron coupled to an external potential in non-relativistic QED Ann. Henri Poincaré14 6 1573-1597 · Zbl 1275.81091
[11] D. Bambusi and S. Cuccagna 2011 On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential Amer. J. Math.133 5 1421-1468 · Zbl 1237.35115
[12] D. Bambusi and L. Galgani 1993 Some rigorous results on the Pauli-Fierz model of classical electrodynamics Ann. Inst. H. Poincaré Phys. Théor.58 2 155-171 · Zbl 0769.35057
[13] V. E. Barnes et al. 1964 Observation of a hyperon with strangeness minus three Phys. Rev. Lett.12 8 204-206
[14] M. Beals and W. Strauss \(1993 L^p\) estimates for the wave equation with a potential Comm. Partial Differential Equations18 7-8 1365-1397 · Zbl 0795.35059
[15] M. Beceanu and M. Goldberg 2012 Schrödinger dispersive estimates for a scaling-critical class of potentials Comm. Math. Phys.314 2 471-481 · Zbl 1250.35047
[16] M. Beceanu and M. Goldberg 2014 Strichartz estimates and maximal operators for the wave equation in \(\mathbb{R}^3\) J. Funct. Anal.266 3 1476-1510 · Zbl 1292.35063
[17] A. Bensoussan, C. Iliine, and A. Komech 2002 Breathers for a relativistic nonlinear wave equation Arch. Ration. Mech. Anal.165 4 317-345 · Zbl 1024.35076
[18] H. Berestycki and P.-L. Lions 1983 Nonlinear scalar field equations. I. Existence of a ground state Arch. Ration. Mech. Anal.82 4 313-345 · Zbl 0533.35029
[19] H. Berestycki and P.-L. Lions 1983 Nonlinear scalar field equations. II. Existence of infinitely many solutions Arch. Ration. Mech. Anal.82 4 347-375 · Zbl 0556.35046
[20] Ф. А. Березин, Л. Д. Фаддеев 1961 Замечание об уравнении Шредингера с сингулярным потенциалом Докл. АН СССР137 5 1011-1014
[21] English transl. F. A. Berezin and L. D. Faddeev 1961 A remark on Schrödinger’s equation with a singular potential Soviet Math. Dokl.2 372-375 · Zbl 0117.06601
[22] N. Bohr 1913 On the constitution of atoms and molecules. I Philos. Mag. (6)26 151 1-25 · JFM 44.0897.01
[23] N. Bohr II Philos. Mag. (6) 153 476-502
[24] N. Bohr III Philos. Mag. (6) 155 857-875
[25] N. Bohr 1949 Discussions with Einstein on epistemological problems in atomic physics Albert Einstein: philosopher-scientist The Library of Living Philosophers 7 The Library of Living Philosophers, Inc., Evanston, IL 201-241
[26] N. Boussaid 2006 Stable directions for small nonlinear Dirac standing waves Comm. Math. Phys.268 3 757-817 · Zbl 1127.35060
[27] N. Boussaid and S. Cuccagna 2012 On stability of standing waves of nonlinear Dirac equations Comm. Partial Differential Equations37 6 1001-1056 · Zbl 1251.35098
[28] V. S. Buslaev, A. I. Komech, E. A. Kopylova, and D. Stuart 2008 On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator Comm. Partial Differential Equations33 4 669-705 · Zbl 1185.35247
[29] В. С. Буслаев, Г. С. Перельман 1992 Рассеяние для нелинейного уравнения Шрёдингера: состояния, близкие к солитону Алгебра и анализ4 6 63-102
[30] English transl. V. S. Buslaev and G. S. Perel’man 1993 Scattering for the nonlinear Schrödinger equation: states close to a soliton St. Petersburg Math. J.4 6 1111-1142
[31] V. S. Buslaev and G. S. Perelman 1995 On the stability of solitary waves for nonlinear Schrödinger equations Nonlinear evolution equations Amer. Math. Soc. Transl. Ser. 2 164 Amer. Math. Soc., Providence, RI 75-98 Adv. Math. Sci., 22 · Zbl 0841.35108
[32] V. S. Buslaev and C. Sulem 2003 On asymptotic stability of solitary waves for nonlinear Schrödinger equations Ann. Inst. H. Poincaré Anal. Non Linéaire20 3 419-475 · Zbl 1028.35139
[33] V. V. Chepyzhov and M. I. Vishik 2002 Attractors for equations of mathematical physics Amer. Math. Soc. Colloq. Publ. 49 Amer. Math. Soc., Providence, RI xii+363 pp. · Zbl 0986.35001
[34] G. M. Coclite and V. Georgiev 2004 Solitary waves for Maxwell-Schrödinger equations Electron. J. Differential Equations2004 94 electronic31 pp. · Zbl 1064.35180
[35] A. Comech 2012 On global attraction to solitary waves. Klein-Gordon equation with mean field interaction at several points J. Differential Equations252 10 5390-5413 · Zbl 1298.35017
[36] A. Comech 2013 Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator Discrete Contin. Dyn. Syst.33 7 2711-2755 · Zbl 1277.39010
[37] F. H. J. Cornish 1965 Classical radiation theory and point charges Proc. Phys. Soc.86 3 427-442
[38] S. Cuccagna 2001 Stabilization of solutions to nonlinear Schrödinger equations Comm. Pure Appl. Math.54 9 1110-1145 · Zbl 1031.35129
[39] S. Cuccagna 2011 The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states Comm. Math. Phys.305 2 279-331 · Zbl 1222.35183
[40] S. Cuccagna and T. Mizumachi 2008 On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations Comm. Math. Phys.284 1 51-77 · Zbl 1155.35092
[41] M. Dafermos and I. Rodnianski 2011 A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds Invent. Math.185 3 467-559 · Zbl 1226.83029
[42] P. D’Ancona 2015 Kato smoothing and Strichartz estimates for wave equations with magnetic potentials Comm. Math. Phys.335 1 1-16 · Zbl 1311.35166
[43] P. D’Ancona, L. Fanelli, L. Vega, and N. Visciglia 2010 Endpoint Strichartz estimates for the magnetic Schrödinger equation J. Funct. Anal.258 10 3227-3240 · Zbl 1188.81061
[44] S. Demoulini and D. Stuart 2009 Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schrödinger system Comm. Math. Phys.290 2 597-632 · Zbl 1185.81071
[45] P. A. M. Dirac 1938 Classical theory of radiating electrons Proc. Roy. Soc. London Ser. A167 929 148-169 · Zbl 0023.42702
[46] R. Donninger, W. Schlag, and A. Soffer 2012 On pointwise decay of linear waves on a Schwarzschild black hole background Comm. Math. Phys.309 1 51-86 · Zbl 1242.83054
[47] T. Duyckaerts, C. Kenig, and F. Merle 2012 Profiles of bounded radial solutions of the focusing, energy-critical wave equation Geom. Funct. Anal.22 3 639-698 · Zbl 1258.35148
[48] T. Duyckaerts, C. Kenig, and F. Merle 2014 Scattering for radial, bounded solutions of focusing supercritical wave equations Int. Math. Res. Not. IMRN2014 1 224-258 · Zbl 1310.35171
[49] T. Duyckaerts, C. Kenig, and F. Merle 2016 Concentration-compactness and universal profiles for the non-radial energy critical wave equation Nonlinear Anal.138 44-82 · Zbl 1339.35186
[50] А. В. Дымов 2012 Диссипативные эффекты в одной линейной лагранжевой системе с бесконечным числом степеней свободы Изв. РАН. Сер. матем.76 6 45-80
[51] English transl. A. V. Dymov 2012 Dissipative effects in a linear Lagrangian system with infinitely many degrees of freedom Izv. Math.76 6 1116-1149 · Zbl 1261.37032
[52] W. Eckhaus and A. van Harten 1981 The inverse scattering transformation and the theory of solitons. An introduction North-Holland Math. Stud. 50 North-Holland Publishing Co., Amsterdam-New York xi+222 pp.
[53] И. Е. Егорова, Е. А. Копылова, В. А. Марченко, Г. Тешль 2016 Об уточнении дисперсионных оценок для одномерных уравнений Шрёдингера и Клейна-Гордона УМН71 3(429) 3-26
[54] English transl. I. E. Egorova, E. A. Kopylova, V. A. Marchenko, and G. Teschl 2016 Dispersion estimates for one-dimensional Schrödinger and Klein-Gordon equations revisited Russian Math. Surveys71 3 391-415 · Zbl 1353.35081
[55] I. Egorova, E. A. Kopylova, and G. Teschl 2015 Dispersion estimates for one-dimensional discrete Schrödinger and wave equations J. Spectr. Theory5 4 663-696 · Zbl 1332.35313
[56] A. Einstein 1905 Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Ann. der Phys. (4)18 639-641
[57] M. B. Erdoğan, M. Goldberg, and W. R. Green 2014 Dispersive estimates for four dimensional Schrödinger and wave equations with obstructions at zero energy Comm. Partial Differential Equations39 10 1936-1964 · Zbl 1325.35017
[58] M. J. Esteban, V. Georgiev, and E. Séré 1996 Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations Calc. Var. Partial Differential Equations4 3 265-281 · Zbl 0869.35105
[59] R. P. Feynman, R. B. Leighton, and M. Sands 1964 The Feynman lectures on physics 2 Mainly electromagnetism and matter Addison-Wesley Publishing Co., Inc., Reading, MA-London xii+569 pp.
[60] C. Foias, O. Manley, R. Rosa, and R. Temam 2001 Navier-Stokes equations and turbulence Encyclopedia Math. Appl. 83 Cambridge Univ. Press, Cambridge xiv+347 pp.
[61] J. Fröhlich and Z. Gang 2014 Emission of Cherenkov radiation as a mechanism for Hamiltonian friction Adv. Math.264 183-235 · Zbl 1305.82043
[62] J. Fröhlich, S. Gustafson, B. L. G. Jonsson, and I. M. Sigal 2004 Solitary wave dynamics in an external potential Comm. Math. Phys.250 3 613-642 · Zbl 1075.35075
[63] J. Fröhlich, T.-P. Tsai, and H.-T. Yau 2002 On the point-particle (Newtonian) limit of the non-linear Hartree equation Comm. Math. Phys.225 2 223-274 · Zbl 1025.81015
[64] G. I. Gaudry 1966 Quasimeasures and operators commuting with convolution Pacific J. Math.18 3 461-476 · Zbl 0156.14601
[65] M. Gell-Mann 1962 Symmetries of baryons and mesons Phys. Rev. (2)125 3 1067-1084 · Zbl 0107.44301
[66] H.-P. Gittel, J. Kijowski, and E. Zeidler 1998 The relativistic dynamics of the combined particle-field system in renormalized classical electrodynamics Comm. Math. Phys.198 3 711-736 · Zbl 0916.53039
[67] M. Goldberg and W. R. Green 2015 Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues. I. The odd dimensional case J. Funct. Anal.269 3 633-682 · Zbl 1317.35216
[68] M. Goldberg and W. R. Green 2017 Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues. II. The even dimensional case J. Spectr. Theory7 1 33-86 · Zbl 1372.35261
[69] M. Grillakis, J. Shatah, and W. Strauss 1987 Stability theory of solitary waves in the presence of symmetry. I J. Funct. Anal.74 1 160-197 · Zbl 0656.35122
[70] M. Grillakis, J. Shatah, and W. Strauss 1990 Stability theory of solitary waves in the presence of symmetry. II J. Funct. Anal.94 2 308-348 · Zbl 0711.58013
[71] J. K. Hale 1988 Asymptotic behavior of dissipative systems Math. Surveys Monogr. 25 Amer. Math. Soc., Providence, RI x+198 pp. · Zbl 0642.58013
[72] F. Halzen and A. D. Martin 1984 Quarks and leptons: an introductory course in modern particle physics John Wiley & Sons, Inc., New York xvi+396 pp.
[73] T. Harada and H. Maeda 2004 Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity Classical Quantum Gravity21 2 371-389 · Zbl 1050.83006
[74] A. Haraux 1991 Systèmes dynamiques dissipatifs et applications Rech. Math. Appl. 17 Masson, Paris xii+132 pp. · Zbl 0726.58001
[75] W. Heisenberg 1961 Der derzeitige Stand der nichtlinearen Spinortheorie der Elementarteilchen Acta Phys. Austriaca14 328-339 · Zbl 0096.43901
[76] W. Heisenberg 1966 Introduction to the unified field theory of elementary particles Intersci. Publ. John Wiley & Sons, London-New York-Sydney ix+177 pp. · Zbl 0205.57502
[77] D. Henry 1981 Geometric theory of semilinear parabolic equations Lecture Notes in Math. 840 Springer-Verlag, Berlin-New York iv+348 pp.
[78] E. Hopf 1951 Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen Math. Nachr.4 213-231 · Zbl 0042.10604
[79] L. Hörmander 1990 The analysis of linear partial differential operators I Grundlehren Math. Wiss. 256 Distribution theory and Fourier analysis Springer-Verlag, Berlin 2nd ed., xii+440 pp.
[80] L. Houllevigue 1908 L’évolution des sciences Librairie A. Collin, Paris xi+287 pp.
[81] В. М. Имайкин 2013 Солитонные асимптотики для систем типа “поле-частица” УМН68 2(410) 33-90
[82] English transl. V. M. Imaykin 2013 Soliton asymptotics for systems of “field-particle” type Russian Math. Surveys68 2 227-281 · Zbl 1307.35288
[83] V. Imaykin, A. Komech, and P. A. Markowich 2003 Scattering of solitons of the Klein-Gordon equation coupled to a classical particle J. Math. Phys.44 3 1202-1217 · Zbl 1061.35070
[84] V. Imaykin, A. Komech, and N. Mauser 2004 Soliton-type asymptotics for the coupled Maxwell-Lorentz equations Ann. Henri Poincaré5 6 1117-1135 · Zbl 1067.35132
[85] V. Imaykin, A. Komech, and H. Spohn 2002 Soliton-type asymptotic and scattering for a charge coupled to the Maxwell field Russ. J. Math. Phys.9 4 428-436 · Zbl 1104.78301
[86] V. Imaykin, A. Komech, and H. Spohn 2004 Scattering theory for a particle coupled to a scalar field Discrete Contin. Dyn. Syst.10 1-2 387-396 · Zbl 1052.37057
[87] V. Imaykin, A. Komech, and H. Spohn 2004 Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit Monatsh. Math.142 1-2 143-156 · Zbl 1082.35145
[88] V. Imaykin, A. Komech, and H. Spohn 2011 Scattering asymptotics for a charged particle coupled to the Maxwell field J. Math. Phys.52 4 042701 33 pp. · Zbl 1316.78002
[89] V. Imaykin, A. Komech, and B. Vainberg 2006 On scattering of solitons for the Klein-Gordon equation coupled to a particle Comm. Math. Phys.268 2 321-367 · Zbl 1127.35054
[90] V. Imaykin, A. Komech, and B. Vainberg 2012 Scattering of solitons for coupled wave-particle equations J. Math. Anal. Appl.389 2 713-740 · Zbl 1235.35068
[91] J. D. Jackson 1999 Classical electrodynamics John Wiley & Sons, Inc., New York 3rd ed., xxi+808 pp.
[92] A. Jensen and T. Kato 1979 Spectral properties of Schrödinger operators and time-decay of the wave functions Duke Math. J.46 3 583-611 · Zbl 0448.35080
[93] K. Jörgens 1961 Das Anfangswertproblem im Groß en für eine Klasse nichtlinearer Wellengleichungen Math. Z.77 295-308 · Zbl 0111.09105
[94] J.-L. Journé, A. Soffer, and C. D. Sogge 1991 Decay estimates for Schrödinger operators Comm. Pure Appl. Math.44 5 573-604 · Zbl 0743.35008
[95] C. Kenig, A. Lawrie, B. Liu, and W. Schlag 2015 Stable soliton resolution for exterior wave maps in all equivariance classes Adv. Math.285 235-300 · Zbl 1331.35076
[96] C. E. Kenig, A. Lawrie, and W. Schlag 2014 Relaxation of wave maps exterior to a ball to harmonic maps for all data Geom. Funct. Anal.24 2 610-647 · Zbl 1288.35356
[97] C. E. Kenig and F. Merle 2006 Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case Invent. Math.166 3 645-675 · Zbl 1115.35125
[98] C. E. Kenig and F. Merle 2008 Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation Acta Math.201 2 147-212 · Zbl 1183.35202
[99] C. E. Kenig and F. Merle 2011 Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications Amer. J. Math.133 4 1029-1065 · Zbl 1241.35136
[100] А. А. Комеч, А. И. Комеч 2013 Вариант теоремы Титчмарша о свертке для распределений на окружности Функц. анализ и его прил.47 1 26-32
[101] English transl. A. A. Komech and A. I. Komech 2013 On the Titchmarsh convolution theorem for distributions on the circle Funct. Anal. Appl.47 1 21-26 · Zbl 1296.46037
[102] А. И. Комеч 1991 О стабилизации взаимодействия струны с нелинейным осциллятором Вестн. Моск. ун-та. Сер. 1. Матем., мех. 6 35-41
[103] English transl. A. I. Komech 1991 On the stabilization of interaction of a string with a nonlinear oscillator Moscow Univ. Math. Bull.46 6 34-39 · Zbl 0784.35011
[104] А. И. Комеч 1988 Линейные уравнения в частных производных с постоянными коэффициентами Дифференциальные уравнения с частными производными - 2 Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления 31 ВИНИТИ, М. 127-261
[105] English transl. A. I. Komech 1994 Linear partial differential equations with constant coefficients Partial differential equations II Encyclopaedia Math. Sci. 31 Springer, Berlin 121-255 · Zbl 0805.35001
[106] A. I. Komech 1995 On stabilization of string-nonlinear oscillator interaction J. Math. Anal. Appl.196 1 384-409 · Zbl 0859.35076
[107] A. I. Komech 1995 On the stabilization of string-oscillator interaction Russ. J. Math. Phys.3 2 227-247 · Zbl 0964.35528
[108] A. Komech 1999 On transitions to stationary states in one-dimensional nonlinear wave equations Arch. Ration. Mech. Anal.149 3 213-228 · Zbl 0939.35030
[109] А. И. Комеч 2000 Аттракторы нелинейных гамильтоновых одномерных волновых уравнений УМН55 1(331) 45-98
[110] English transl A. I. Komech 2000 Attractors of non-linear Hamiltonian one-dimensional wave equations Russian Math. Surveys55 1 43-92 · Zbl 0958.37058
[111] A. I. Komech 2003 On attractor of a singular nonlinear \(\text U(1)\)-invariant Klein-Gordon equation Progress in analysisBerlin, 2001 I, II World Sci. Publ., River Edge, NJ 599-611 · Zbl 1060.35022
[112] A. Komech 2013 Quantum mechanics: genesis and achievements Springer, Dordrecht xviii+285 pp. · Zbl 1264.81005
[113] A. Komech 2016 Attractors of Hamilton nonlinear PDEs Discrete Contin. Dyn. Syst.36 11 6201-6256 · Zbl 1382.35049
[114] A. Komech Quantum jumps and attractors of Maxwell-Schrödinger equations Nonlinearity
[115] A. Komech 2019 1907.04297 14 pp.
[116] A. I. Komech and A. A. Komech 2006 On the global attraction to solitary waves for the Klein-Gordon equation coupled to a nonlinear oscillator C. R. Math. Acad. Sci. Paris343 2 111-114 · Zbl 1096.35020
[117] A. Komech and A. Komech 2007 Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field Arch. Ration. Mech. Anal.185 1 105-142 · Zbl 1131.35003
[118] A. I. Komech and A. A. Komech 2008 Global attraction to solitary waves in models based on the Klein-Gordon equation SIGMA4 010 23 pp. · Zbl 1137.35008
[119] A. Komech and A. Komech 2009 Global attraction to solitary waves for Klein-Gordon equation with mean field interaction Ann. Inst. H. Poincaré Anal. Non Linéaire26 3 855-868 · Zbl 1177.35201
[120] A. Komech and A. Komech 2010 On global attraction to solitary waves for the Klein-Gordon field coupled to several nonlinear oscillators J. Math. Pures Appl. (9)93 1 91-111 · Zbl 1180.35124
[121] A. Komech and A. Komech 2010 Global attraction to solitary waves for a nonlinear Dirac equation with mean field interaction SIAM J. Math. Anal.42 6 2944-2964 · Zbl 1237.35022
[122] A. Komech and E. Kopylova 2006 Scattering of solitons for the Schrödinger equation coupled to a particle Russ. J. Math. Phys.13 2 158-187 · Zbl 1118.35040
[123] A. I. Komech and E. A. Kopylova 2010 Weighted energy decay for 1D Klein-Gordon equation Comm. Partial Differential Equations35 2 353-374 · Zbl 1190.35134
[124] A. I. Komech and E. A. Kopylova 2010 Weighted energy decay for 3D Klein-Gordon equation J. Differential Equations248 3 501-520 · Zbl 1185.35023
[125] A. Komech and E. Kopylova 2012 Dispersion decay and scattering theory John Wiley & Sons, Inc., Hoboken, NJ xxvi+175 pp. · Zbl 1317.35162
[126] A. I. Komech and E. A. Kopylova 2013 Dispersion decay for the magnetic Schrödinger equation J. Funct. Anal.264 3 735-751 · Zbl 1259.35172
[127] A. Komech and E. Kopylova 2014 On eigenfunction expansion of solutions to the Hamilton equations J. Stat. Phys.154 1-2 503-521 · Zbl 1300.34195
[128] A. I. Komech and E. A. Kopylova 2015 Weighted energy decay for magnetic Klein-Gordon equation Appl. Anal.94 2 218-232 · Zbl 1311.35028
[129] A. Komech and E. Kopylova 2015 On the eigenfunction expansion for Hamilton operators J. Spectr. Theory5 2 331-361 · Zbl 1327.35266
[130] A. I. Komech, E. A. Kopylova, and S. A. Kopylov 2013 On nonlinear wave equations with parabolic potentials J. Spectr. Theory3 4 485-503 · Zbl 1295.35063
[131] A. I. Komech, E. A. Kopylova, and M. Kunze 2006 Dispersive estimates for 1D discrete Schrödinger and Klein-Gordon equations Appl. Anal.85 12 1487-1508 · Zbl 1121.39015
[132] A. I. Komech, E. A. Kopylova, and H. Spohn 2011 Scattering of solitons for Dirac equation coupled to a particle J. Math. Anal. Appl.383 2 265-290 · Zbl 1229.35228
[133] A. Komech, E. Kopylova, and D. Stuart 2012 On asymptotic stability of solitons in a nonlinear Schrödinger equation Commun. Pure Appl. Anal.11 3 1063-1079 · Zbl 1282.35352
[134] A. I. Komech, E. A. Kopylova, and B. R. Vainberg 2008 On dispersive properties of discrete 2D Schrödinger and Klein-Gordon equations J. Funct. Anal.254 8 2227-2254 · Zbl 1148.35087
[135] A. Komech, M. Kunze, and H. Spohn 1999 Effective dynamics for a mechanical particle coupled to a wave field Comm. Math. Phys.203 1 1-19 · Zbl 0947.70010
[136] A. I. Komech, N. J. Mauser, and A. P. Vinnichenko 2004 Attraction to solitons in relativistic nonlinear wave equations Russ. J. Math. Phys.11 3 289-307 · Zbl 1186.35222
[137] A. I. Komech and A. E. Merzon 2009 Scattering in the nonlinear Lamb system Phys. Lett. A373 11 1005-1010 · Zbl 1228.81264
[138] A. I. Komech and A. E. Merzon 2009 On asymptotic completeness for scattering in the nonlinear Lamb system J. Math. Phys.50 2 023514 10 pp. · Zbl 1202.81200
[139] A. I. Komech and A. E. Merzon 2013 On asymptotic completeness of scattering in the nonlinear Lamb system. II J. Math. Phys.54 1 012702 9 pp. · Zbl 1280.81140
[140] A. Komech and A. Merzon 2019 Stationary diffraction by wedges. Method of automorphic functions on complex characteristics Lecture Notes in Math. 2249 Springer, Cham xi+165 pp. · Zbl 1431.35028
[141] A. Komech and H. Spohn 1998 Soliton-like asymptotics for a classical particle interacting with a scalar wave field Nonlinear Anal.33 1 13-24 · Zbl 0935.37046
[142] A. Komech and H. Spohn 2000 Long-time asymptotics for the coupled Maxwell-Lorentz equations Comm. Partial Differential Equations25 3-4 559-584 · Zbl 0970.35149
[143] A. Komech, H. Spohn, and M. Kunze 1997 Long-time asymptotics for a classical particle interacting with a scalar wave field Comm. Partial Differential Equations22 1-2 307-335 · Zbl 0878.35094
[144] Е. А. Копылова 2009 Дисперсионные оценки для дискретных уравнений Шредингера и Клейна-Гордона Алгебра и анализ21 5 87-113
[145] English transl. E. A. Kopylova 2010 Dispersion estimates for discrete Schrödinger and Klein-Gordon equations St. Petersburg Math. J.21 5 743-760 · Zbl 1213.34110
[146] E. A. Kopylova 2009 On asymptotic stability of solitary waves in the discrete Schrödinger equation coupled to a nonlinear oscillator Nonlinear Anal.71 7-8 3031-3046 · Zbl 1167.35515
[147] E. A. Kopylova 2010 On asymptotic stability of solitary waves in discrete Klein-Gordon equation coupled to a nonlinear oscillator Appl. Anal.89 9 1467-1492 · Zbl 1207.39021
[148] Е. А. Копылова 2010 Дисперсионные оценки для уравнений Шрёдингера и Клейна-Гордона УМН65 1(391) 97-144
[149] English transl. E. A. Kopylova 2010 Dispersive estimates for the Schrödinger and Klein-Gordon equations Russian Math. Surveys65 1 95-142 · Zbl 1201.35061
[150] Е. А. Копылова 2013 Асимптотическая устойчивость солитонов для нелинейных гиперболических уравнений УМН68 2(410) 91-144
[151] English transl. E. A. Kopylova 2013 Asymptotic stability of solitons for nonlinear hyperbolic equations Russian Math. Surveys68 2 283-334 · Zbl 1275.35069
[152] E. Kopylova 2017 On global attraction to solitary waves for the Klein-Gordon equation with concentrated nonlinearity Nonlinearity30 11 4191-4207 · Zbl 1392.35027
[153] E. Kopylova 2018 On global attraction to stationary states for wave equation with concentrated nonlinearity J. Dynam. Differential Equations30 1 107-116 · Zbl 1406.35175
[154] E. Kopylova 2018 On dispersion decay for 3D Klein-Gordon equation Discrete Contin. Dyn. Syst.38 11 5765-5780 · Zbl 1409.35031
[155] E. A. Kopylova and A. I. Komech 2010 Long time decay for 2D Klein-Gordon equation J. Funct. Anal.259 2 477-502 · Zbl 1192.35151
[156] E. A. Kopylova and A. I. Komech 2011 On asymptotic stability of moving kink for relativistic Ginzburg-Landau equation Comm. Math. Phys.302 1 225-252 · Zbl 1209.35134
[157] E. Kopylova and A. I. Komech 2011 On asymptotic stability of kink for relativistic Ginzburg-Landau equations Arch. Ration. Mech. Anal.202 1 213-245 · Zbl 1256.35146
[158] E. Kopylova and A. Komech 2019 On global attractor of 3D Klein-Gordon equation with several concentrated nonlinearities Dyn. Partial Differ. Equ.16 2 105-124 · Zbl 1411.35047
[159] E. Kopylova and A. Komech Publ. online 2019 Global attractor for 1D Dirac field coupled to nonlinear oscillator Comm. Math. Phys. 1-31 · Zbl 1437.35600
[160] E. Kopylova and G. Teschl 2016 Dispersion estimates for one-dimensional discrete Dirac equations J. Math. Anal. Appl.434 1 191-208 · Zbl 1330.35366
[161] V. V. Kozlov 2001 Kinetics of collisionless continuous medium Regul. Chaotic Dyn.6 3 235-251 · Zbl 1006.82011
[162] В. В. Козлов, О. Г. Смолянов 2006 Функция Вигнера и диффузия в бесстолкновительной среде, состоящей из квантовых частиц Теория вероятн. и ее примен.51 1 109-125
[163] English transl. V. V. Kozlov and O. G. Smolyanov 2007 Wigner function and diffusion in a collision-free medium of quantum particles Theory Probab. Appl.51 1 168-181 · Zbl 1120.82005
[164] В. В. Козлов, Д. В. Трещёв 2003 Слабая сходимость решений уравнения Лиувилля для нелинейных гамильтоновых систем ТМФ134 3 388-400
[165] English transl. V. V. Kozlov and D. V. Treshchev 2003 Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems Theor. Math. Phys.134 3 339-350 · Zbl 1178.37050
[166] В. В. Козлов, Д. В. Трещёв 2003 Эволюция мер в фазовом пространстве нелинейных гамильтоновых систем ТМФ136 3 496-506
[167] English transl. V. V. Kozlov and D. V. Treshchev 2003 Evolution of measures in the phase space of nonlinear Hamiltonian systems Theor. Math. Phys.136 3 1325-1335 · Zbl 1178.37049
[168] М. Г. Крейн, Г. К. Лангер 1963 О спектральной функции самосопряженного оператора в пространстве с индефинитной метрикой Докл. АН СССР152 1 39-42
[169] English transl. M. G. Kreĭn and G. K. Langer 1963 The spectral function of a selfadjoint operator in a space with indefinite metric Soviet Math. Dokl.4 1236-1239 · Zbl 0131.12604
[170] J. Krieger, K. Nakanishi, and W. Schlag 2015 Center-stable manifold of the ground state in the energy space for the critical wave equation Math. Ann.361 1-2 1-50 · Zbl 1315.35133
[171] J. Krieger and W. Schlag 2012 Concentration compactness for critical wave maps EMS Monogr. Math. Eur. Math. Soc., Zürich vi+484 pp. · Zbl 1387.35006
[172] M. Kunze and H. Spohn 2000 Adiabatic limit for the Maxwell-Lorentz equations Ann. Henri Poincaré1 4 625-653 · Zbl 0971.35076
[173] О. А. Ладыженская 1957 О принципе предельной амплитуды УМН12 3(75) 161-164
[174] O. A. Ladyzhenskaya 1957 On the principle of limit amplitude Uspekhi Mat. Nauk12 3(75) 161-164
[175] G. L. Lamb, Jr. 1980 Elements of soliton theory Pure Appl. Math. John Wiley & Sons, Inc., New York xiii+289 pp.
[176] H. Lamb 1900 On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium Proc. London Math. Soc.32 208-211 · JFM 31.0785.01
[177] L. Landau 1944 On the problem of turbulence Докл. АН СССР44 311-314 · Zbl 0063.03437
[178] H. Langer 1982 Spectral functions of definitizable operators in Krein spaces Functional analysisDubrovnik, 1981 Lecture Notes in Math. 948 Springer, Berlin-New York 1-46
[179] P. D. Lax, C. S. Morawetz, and R. S. Phillips 1963 Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle Comm. Pure Appl. Math.16 4 477-486 · Zbl 0161.08001
[180] B. Ya. Levin 1996 Lectures on entire functions Transl. Math. Monogr. 150 Amer. Math. Soc., Providence, RI xvi+248 pp.
[181] L. Lewin 1951 Advanced theory of waveguides Iliffe and Sons, Ltd., London 192 pp.
[182] J.-L. Lions 1969 Quelques méthodes de résolution des problèmes aux limites non linéaires Dunod, Paris, Gauthier-Villars, Paris xx+554 pp. · Zbl 0189.40603
[183] E. Long and D. Stuart 2009 Effective dynamics for solitons in the nonlinear Klein-Gordon-Maxwell system and the Lorentz force law Rev. Math. Phys.21 4 459-510 · Zbl 1178.35322
[184] Л. А. Люстерник, Л. Г. Шнирельман 1930 Топологические методы в вариационных задачах МГУ, М. 68 pp.
[185] French transl. L. Lusternik and L. Schnirelmann 1934 Méthodes topologiques dans les problèmes variationnels Actualités Sci. Indust. 188 Hermann, Paris 51 pp.
[186] Л. Люстерник, Л. Шнирельман 1947 Топологические методы в вариационных задачах и их приложения к дифференциальной геометрии поверхностей УМН2 1(17) 166-217
[187] L. Lusternik and L. Schnirelmann 1947 Topological methods in variational problems and their application to the differential geometry of surfaces Uspekhi Mat. Nauk2 1(17) 166-217
[188] B. Marshall, W. Strauss, and S. Wainger \(1980 L^p-L^q\) estimates for the Klein-Gordon equation J. Math. Pures Appl. (9)59 4 417-440 · Zbl 0457.47040
[189] Y. Martel 2005 Asymptotic \(N\)-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations Amer. J. Math.127 5 1103-1140 · Zbl 1090.35158
[190] Y. Martel and F. Merle 2005 Asymptotic stability of solitons of the subcritical gKdV equations revisited Nonlinearity18 1 55-80 · Zbl 1064.35171
[191] Y. Martel, F. Merle, and T.-P. Tsai 2002 Stability and asymptotic stability in the energy space of the sum of \(N\) solitons for subcritical gKdV equations Comm. Math. Phys.231 2 347-373 · Zbl 1017.35098
[192] M. Merkli and I. M. Sigal 1999 A time-dependent theory of quantum resonances Comm. Math. Phys.201 3 549-576 · Zbl 0934.47007
[193] J. R. Miller and M. I. Weinstein 1996 Asymptotic stability of solitary waves for the regularized long-wave equation Comm. Pure Appl. Math.49 4 399-441 · Zbl 0854.35102
[194] C. S. Morawetz 1962 The limiting amplitude principle Comm. Pure Appl. Math.15 3 349-361 · Zbl 0196.41202
[195] C. S. Morawetz 1968 Time decay for the nonlinear Klein-Gordon equations Proc. Roy. Soc. London Ser. A306 291-296 · Zbl 0157.41502
[196] C. S. Morawetz and W. A. Strauss 1972 Decay and scattering of solutions of a nonlinear relativistic wave equation Comm. Pure Appl. Math.25 1 1-31 · Zbl 0228.35055
[197] K. Nakanishi and W. Schlag 2011 Invariant manifolds and dispersive Hamiltonian evolution equations Zur. Lect. Adv. Math. Eur. Math. Soc., Zürich vi+253 pp. · Zbl 1235.37002
[198] Y. Ne’eman 1962 Unified interactions in the unitary gauge theory Nuclear Phys.30 347-349
[199] D. Noja and A. Posilicano 2005 Wave equations with concentrated nonlinearities J. Phys. A38 22 5011-5022 · Zbl 1085.81039
[200] R. L. Pego and M. I. Weinstein 1994 Asymptotic stability of solitary waves Comm. Math. Phys.164 2 305-349 · Zbl 0805.35117
[201] G. Perelman 2004 Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations Comm. Partial Differential Equations29 7-8 1051-1095 · Zbl 1067.35113
[202] C.-A. Pillet and C. E. Wayne 1997 Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations J. Differential Equations141 2 310-326 · Zbl 0890.35016
[203] M. Reed and B. Simon 1979 Methods of modern mathematical physics III Scattering theory Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London xv+463 pp.
[204] M. Reed and B. Simon 1978 Methods of modern mathematical physics IV Analysis of operators Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London xv+396 pp.
[205] I. Rodnianski and W. Schlag 2004 Time decay for solutions of Schrödinger equations with rough and time-dependent potentials Invent. Math.155 3 451-513 · Zbl 1063.35035
[206] I. Rodnianski, W. Schlag, and A. Soffer 2003 Asymptotic stability of \(N\)-soliton states of NLS math/0309114 70 pp.
[207] I. Rodnianski, W. Schlag, and A. Soffer 2005 Dispersive analysis of charge transfer models Comm. Pure Appl. Math.58 2 149-216 · Zbl 1130.81053
[208] W. Rudin 1973 Functional analysis McGraw-Hill Series in Higher Mathematics McGraw-Hill Book Co. xiii+397 pp.
[209] E. Schrödinger 1926 Quantisierung als Eigenwertproblem. I Ann. Phys.79(384) 4 361-376 · JFM 52.0965.08
[210] E. Schrödinger 1926 II Ann. Phys.79(384) 6 489-527 · JFM 52.0966.01
[211] E. Schrödinger 1926 III Ann. Phys.80(385) 13 437-490 · JFM 52.0966.02
[212] E. Schrödinger 1926 IV Ann. Phys.81(386) 18 109-139 · JFM 52.0966.03
[213] I. Segal 1966 Quantization and dispersion for nonlinear relativistic equations Mathematical theory of elementary particlesDedham, MA 1965 M.I.T. Press, Cambridge, MA 79-108
[214] I. Segal 1968 Dispersion for non-linear relativistic equations. II Ann. Sci. École Norm. Sup. (4)1 4 459-497 · Zbl 0179.42302
[215] I. M. Sigal 1993 Non-linear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions Comm. Math. Phys.153 2 297-320 · Zbl 0780.35106
[216] A. Soffer 2006 Soliton dynamics and scattering International congress of mathematicians III Eur. Math. Soc., Zürich 459-471 · Zbl 1111.35054
[217] A. Soffer and M. I. Weinstein 1990 Multichannel nonlinear scattering for nonintegrable equations Comm. Math. Phys.133 1 119-146 · Zbl 0721.35082
[218] A. Soffer and M. I. Weinstein 1992 Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data J. Differential Equations98 2 376-390 · Zbl 0795.35073
[219] A. Soffer and M. I. Weinstein 1999 Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations Invent. Math.136 1 9-74 · Zbl 0910.35107
[220] A. Soffer and M. I. Weinstein 2004 Selection of the ground state for nonlinear Schrödinger equations Rev. Math. Phys.16 8 977-1071 · Zbl 1111.81313
[221] H. Spohn 2004 Dynamics of charged particles and their radiation field Cambridge Univ. Press, Cambridge xvi+360 pp. · Zbl 1078.81004
[222] W. A. Strauss 1968 Decay and asymptotics for \(\square u=F(u)\) J. Funct. Anal.2 4 409-457 · Zbl 0182.13602
[223] W. A. Strauss 1977 Existence of solitary waves in higher dimensions Comm. Math. Phys.55 2 149-162 · Zbl 0356.35028
[224] W. A. Strauss 1981 Nonlinear scattering theory at low energy J. Funct. Anal.41 1 110-133 · Zbl 0466.47006
[225] W. A. Strauss 1981 Nonlinear scattering theory at low energy: sequel J. Funct. Anal.43 3 281-293 · Zbl 0494.35068
[226] D. Stuart 2010 Existence and Newtonian limit of nonlinear bound states in the Einstein-Dirac system J. Math. Phys.51 3 032501 13 pp. · Zbl 1309.83036
[227] D. Tataru 2013 Local decay of waves on asymptotically flat stationary space-times Amer. J. Math.135 2 361-401 · Zbl 1266.83033
[228] R. Temam 1997 Infinite-dimensional dynamical systems in mechanics and physics Appl. Math. Sci. 68 Springer-Verlag, New York 2nd ed., xxii+648 pp.
[229] E. C. Titchmarsh 1926 The zeros of certain integral functions Proc. London Math. Soc. (2)25 1 283-302 · JFM 52.0334.03
[230] D. Treschev 2010 Oscillator and thermostat Discrete Contin. Dyn. Syst.28 4 1693-1712 · Zbl 1209.70014
[231] T.-P. Tsai 2003 Asymptotic dynamics of nonlinear Schrödinger equations with many bound states J. Differential Equations192 1 225-282 · Zbl 1038.35128
[232] T.-P. Tsai and H.-T. Yau 2002 Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data Adv. Theor. Math. Phys.6 1 107-139 · Zbl 1033.81034
[233] T.-P. Tsai and H.-T. Yau 2002 Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions Comm. Pure Appl. Math.55 2 153-216 · Zbl 1031.35137
[234] M. I. Weinstein 1985 Modulational stability of ground states of nonlinear Schrödinger equations SIAM J. Math. Anal.16 3 472-491 · Zbl 0583.35028
[235] D. R. Yafaev 1992 On a zero-range interaction of a quantum particle with the vacuum J. Phys. A25 4 963-978 · Zbl 0751.47038
[236] D. R. Yafaev 2017 A point interaction for the discrete Schrödinger operator and generalized Chebyshev polynomials J. Math. Phys.58 6 063511 24 pp. · Zbl 06747660
[237] K. Yajima 2005 Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue Comm. Math. Phys.259 2 475-509 · Zbl 1079.81021
[238] Я. Б. Зельдович 1960 Рассеяние сингулярным потенциалом в теории возмущений и в импульсном представлении ЖЭТФ38 3 819-824
[239] English transl. Ya. B. Zel’dovich 1960 Scattering by a singular potential in perturbation theory and in the momentum representation Soviet Physics. JETP11 3 594-597
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.