×

Stabilization in a chemotaxis model for virus infection. (English) Zbl 1439.35052

Summary: This paper presents a qualitative analysis of a model describing the time and space dynamics of a virus which migrates driven by chemotaxis. The initial-boundary value problem related to applications of the model to a real biological dynamics is studied in detail. The main result consists in the proof of global existence and asymptotic stability.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
35K58 Semilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. M. Anderson; R. M. May; S. Gupta, Non-linear phenomena in host-parasite interactions, Parasitology, 99, 59-79 (1989)
[2] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44, 331-340 (1975)
[3] N. Bellomo; A. Bellouquid; N. Chouhad, From a multiscale derivation of nonlinear cross-diffusion models to Keller-Segel models in a Navier-Stokes fluid, Math. Models Methods Appl. Sci., 26, 2041-2069 (2016) · Zbl 1353.35038
[4] N. Bellomo; M. Winkler, A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up, Commun. Part. Diff. Eq., 42, 436-473 (2017) · Zbl 1430.35166
[5] S. Bonhoeffer; R. M. May; G. M. Shaw; M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94, 6971-6976 (1997)
[6] J. Calvo; J. Campos; V. Caselles; O. Sanchez; J. Soler, Flux-saturated porous media equations and applications, Surv. Math. Sciences, 2, 131-218 (2015) · Zbl 1328.35089
[7] D. Campos; V. Méndez; S. Fedotov, The effects of distributed life cycles on the dynamics of viral infections, J. Theor. Biol., 254, 430-438 (2008) · Zbl 1400.92467
[8] D. L. DeAngelis; R. A. Goldstein; R. V. O’Neill, A model for trophic interaction, Ecology, 56, 881-892 (1975)
[9] O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases, John Wiley & Sons, Ltd., Chichester, 2000. · Zbl 0997.92505
[10] V. Doceul; M. Hollinshead; L. van der Linden; G. L. Smith, Repulsion of superinfecting virions: A mechanism for rapid virus spread, Science, 327, 873-876 (2010) · Zbl 1355.92061
[11] L. Gibelli; A. Elaiw; M.-A. Alghamdi; A. Althiabi, Heterogeneous population dynamics of active particles: Progression, mutations and selection dynamics, Math. Models Methods App. Sci., 27, 617-640 (2017) · Zbl 1366.82078
[12] A. T. Haase, Targeting early infection to prevent HIV-1 mucosal transmission, Nature, 464, 217-223 (2010)
[13] A. T. Haase; K. Henry; M. Zupancic; G. Sedgewick; R. A. Faust; H. Melroe; W. Cavert; K. Gebhard; K. Staskus; Z. Q. Zhang; P. J. Dailey; H. H. Balfour; A. Erice; A. S. Perelson, Quantitative image analysis of HIV-1 infection in lymphoid tissue, Science, 274, 985-989 (1996)
[14] T. H. Harris; E. J. Banigan; D. A. Christian; C. Konradt; E. D. Tait Wojno; K. Norose; E. H. Wilson; B. John; W. Weninger; A. D. Luster; A. J. Liu; C. A. Hunter, Generalized Levy walks and the role of chemokines in migration of effector CD8 + T cells, Nature, 486, 545-548 (2012)
[15] T. Hillen; K. J. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 183-217 (2009) · Zbl 1161.92003
[16] D. Horstmann; M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Diff. Equations, 215, 52-107 (2005) · Zbl 1085.35065
[17] E. Jones; P. Roemer, Analysis and simulation of the three-component model of HIV dynamics, SIAM Undergraduate Research Online, 7, 89-105 (2014)
[18] E. F. Keller; L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[19] E. F. Keller; L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30, 225-234 (1971) · Zbl 1170.92307
[20] N. L. Komarova, Viral reproductive strategies: How can lytic viruses be evolutionarily competitive?, J. Theor. Biol., 249 (2007), 766-784. · Zbl 1453.92218
[21] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66, 879-883 (2004) · Zbl 1334.92409
[22] F. Lin; E. C. Butcher, T cell chemotaxis in a simple microfluidic device, Lab. Chip., 11, 1462-1469 (2006)
[23] M. A. Nowak; C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272, 74-79 (1996)
[24] M. A. Nowak; C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272, 74-79 (1996) · Zbl 1101.92028
[25] N. A. Nowak and R. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, 2000. · Zbl 1356.35130
[26] N. Outada; N. Vauchelet; T. Akrid; M. Khaladi, From kinetic theory of multicellular systems to hyperbolic tissue equations: Asymptotic limits and computing, Math. Models Methods Appl. Sci., 26, 2709-2734 (2016)
[27] A. S. Perelson; A. U. Neumann; M. Markowitz; J. M. Leonard; D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582-1586 (1996) · Zbl 1185.92006
[28] B. Perthame, Transport Equations in Biology, Birkäuser, Basel, 2007. · Zbl 0796.35089
[29] M. M. Porzio; V. Vespri, Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Diff. Equations, 103, 146-178 (1993) · Zbl 1273.92035
[30] O. Stancevic; C. N. Angstmann; J. M. Murray; B. I. Henry, Turing patterns from dynamics of early HIV infection, Bull. Math. Biol., 75, 774-795 (2013) · Zbl 1259.35210
[31] Y. Tao; M. Winkler, A chemotaxis-haptotaxis model: The roles of porous medium diffusion and logistic source, SIAM J. Math. Anal., 43, 685-704 (2011) · Zbl 1382.35127
[32] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Diff. Equations, 252 (2012), 692-715. · Zbl 1166.92008
[33] M. J. Tindall; P. K. Maini; S. L. Porter; J. P. Armitage, Overview of mathematical approaches to model bacterial chemotaxis Ⅰ: The single cell, Bull. Math. Biol., 70, 1525-1569 (2008) · Zbl 1209.92006
[34] M. J. Tindall; P. K. Maini; S. L. Porter; J. P. Armitage, Overview of mathematical approaches to model bacterial chemotaxis Ⅱ: Bacterial populations, Bull. Math. Biol., 70, 1570-1607 (2008)
[35] M. Verbeni; O. Sánchez; E. Mollica; I. Siegli-Cachedenier; A. Carleton; I. Guerrero; A. Ruiz i. Altaba; J. Soler, Morphogenetic action through flux-limited spreading, Phys. Life Rev., 10, 457-475 (2013) · Zbl 1352.92094
[36] W. Wang; W. Ma; X. Lai, Repulsion effect on superinfecting virions by infected cells for virus infection dynamic model with absorption effect and chemotaxis, Nonlinear Anal. RWA, 33, 253-283 (2017) · Zbl 0555.92014
[37] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.
[38] X. Wei; S. K. Ghosn; M. E. Taylor; V. A. A. Johnson; E. A. Emini; P. Deutsch; J. D. Lifson; S. Bonhoeffer; M. A. Nowak; B. H. Hahn; M. S. Saag; G. M. Shaw, Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 117-122 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.