×

zbMATH — the first resource for mathematics

The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements. (English) Zbl 1439.65192
Summary: We explore the use of the non-symmetric Nitsche method for the weak imposition of boundary and coupling conditions along interfaces that intersect through a finite element mesh. In contrast to symmetric Nitsche methods, it does not require stabilization and therefore does not depend on the appropriate estimation of stabilization parameters. We first review the available mathematical background, recollecting relevant aspects of the method from a numerical analysis viewpoint. We then compare accuracy and convergence of symmetric and non-symmetric Nitsche methods for a Laplace problem, a Kirchhoff plate, and in 3D elasticity. Our numerical experiments confirm that the non-symmetric method leads to reduced accuracy in the \(L^2\) error, but exhibits superior accuracy and robustness for derivative quantities such as diffusive flux, bending moments or stress. Based on our numerical evidence, the non-symmetric Nitsche method is a viable alternative for problems with diffusion-type operators, in particular when the accuracy of derivative quantities is of primary interest.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Haeri, S.; Shrimpton, J., On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows, Int. J. Multiph. Flow., 40, 38-55 (2012)
[2] Avci, B.; Wriggers, P., Direct numerical simulation of particulate flows using a fictitious domain method, (Numerical Simulations of Coupled Problems in Engineering (2014), Springer), 105-127
[3] Schillinger, D.; Dede’, L.; Scott, M.; Evans, J.; Borden, M.; Rank, E.; Hughes, T., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249-250, 116-150 (2012) · Zbl 1348.65055
[4] Ruess, M.; Schillinger, D.; Özcan, A.; Rank, E., Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Computer Methods in Applied Mechanics and Engineering, 269, 46-71 (2014) · Zbl 1296.74013
[5] Nagy, A.; Benson, D., On the numerical integration of trimmed isogeometric elements, Computer Methods in Applied Mechanics and Engineering, 284, 165-185 (2015)
[6] Breitenberger, M.; Apostolatos, A.; Philipp, B.; Wüchner, R.; Bletzinger, K.-U., A nalysis in computer aided design: Nonlinear isogeometric b-rep analysis of shell structures, Computer Methods in Applied Mechanics and Engineering, 284, 401-457 (2015)
[7] Ruess, M.; Tal, D.; Trabelsi, N.; Yosibash, Z.; Rank, E., The finite cell method for bone simulations: Verification and validation, Biomech. Model. Mechanobiol., 11, 3, 425-437 (2012)
[8] Schillinger, D.; Ruess, M.; Zander, N.; Bazilevs, Y.; Düster, A.; Rank, E., Small and large deformation analysis with the \(p\)- and B-spline versions of the finite cell method, Comput. Mech., 50, 4, 445-478 (2012) · Zbl 1398.74401
[9] Schillinger, D.; Ruess, M., The finite cell method: A review in the context of higher-order structural analysis of CAD and image-based geometric models, Arch. Comput. Methods Eng., 22, 3, 391-455 (2015) · Zbl 1348.65056
[10] Parvizian, J.; Düster, A.; Rank, E., Topology optimization using the finite cell method, Optim. Eng., 13, 57-78 (2012) · Zbl 1293.74357
[11] Benk, J.; Bungartz, H.-J.; Mehl, M.; Ulbrich, M., Immersed boundary methods for fluid-structure interaction and shape optimization within an FEM-based PDE toolbox, (Advanced Computing (2013), Springer), 25-56
[12] Cirak, F.; Bandara, K., Multiresolution shape optimisation with subdivision surfaces, (Isogeometric Analysis and Applications 2014 (2015), Springer), 127-156 · Zbl 1334.65108
[13] Bandara, K.; Rüberg, T.; Cirak, F., Shape optimisation with multiresolution subdivision surfaces and immersed finite elements, Computer Methods in Applied Mechanics and Engineering, 300, 510-539 (2016)
[14] Hsu, M.-C.; Kamensky, D.; Bazilevs, Y.; Sacks, M.; Hughes, T., Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput. Mech., 54, 1055-1071 (2014) · Zbl 1311.74039
[15] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J.; Aggarwal, A.; Bazilevs, Y.; Sacks, M.; Hughes, T., An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves, Computer Methods in Applied Mechanics and Engineering, 284, 1005-1053 (2015)
[16] Kamensky, D.; Evans, J.; Hsu, M.-C., Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis, Commun. Comput. Phys., 18, 1147-1180 (2015) · Zbl 1373.76093
[17] Hsu, M.-C.; Kamensky, D.; Xu, F.; Kiendl, J.; Wang, C.; Wu, M.; Mineroff, J.; Reali, A.; Bazilevs, Y.; Sacks, M., Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models, Comput. Mech., 55, 1211-1225 (2015) · Zbl 1325.74048
[18] Stavrev, A., The role of higher-order geometry approximation and accurate quadrature in NURBS based immersed boundary methods (2012), Technische Universität München, (Master Thesis)
[19] Xu, F.; Schillinger, D.; Kamensky, D.; Varduhn, V.; Wang, C.; Hsu, M.-C., The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries, Comput. & Fluids (2015)
[20] Varduhn, V.; Hsu, M.-C.; Ruess, M.; Schillinger, D., The tetrahedral finite cell method: higher-order immersogeometric analysis on adaptive non-boundary-fitted meshes, Internat. J. Numer. Methods Engrg. (2016) · Zbl 1352.65558
[21] Marco, O.; Sevilla, R.; Zhang, Y.; Ródenas, J.; Tur, M., Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry, Internat. J. Numer. Methods Engrg., 103, 445-468 (2015) · Zbl 1352.65592
[22] Fries, T.-P.; Omerovic, S., Higher-order accurate integration of implicit geometries, Internat. J. Numer. Methods Engrg., 106, 323-371 (2016) · Zbl 1352.65498
[23] Kudela, L.; Zander, N.; Kollmannsberger, S.; Rank, E., Smart octrees: Accurately integrating discontinuous functions in 3D, Comput. Methods Appl. Mech. Engrg. (2016)
[24] Lehrenfeld, C., High order unfitted finite element methods on level set domains using isoparametric mappings, Computer Methods in Applied Mechanics and Engineering, 300, 716-733 (2016)
[25] Nitsche, J., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hamburg, 36, 9-15 (1970) · Zbl 0229.65079
[26] Ruess, M.; Schillinger, D.; Bazilevs, Y.; Varduhn, V.; Rank, E., Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method, International Journal for Numerical Methods in Engineering, 95, 10, 811-846 (2013) · Zbl 1352.65643
[27] Harari, I.; Grosu, E., A unified approach for embedded boundary conditions for fourth-order elliptic problems, International Journal for Numerical Methods in Engineering, 104, 655-675 (2015) · Zbl 1352.65507
[28] Baaijens, F., A fictitious domain/mortar element method for fluid-structure interaction, International Journal for Numerical Methods in Fluids, 35, 743-761 (2001) · Zbl 0979.76044
[29] Parussini, L.; Pediroda, V., Fictitious domain approach with hp-finite element approximation for incompressible fluid flow, J. Comput. Phys., 228, 3891-3910 (2009) · Zbl 1169.76037
[30] Gerstenberger, A.; Wall, W., An embedded Dirichlet formulation for 3D continua, International Journal for Numerical Methods in Engineering, 82, 537-563 (2010) · Zbl 1188.74056
[31] Shahmiri, S.; Gerstenberger, A.; Wall, W., An xfem-based embedding mesh technique for incompressible viscous flows, Internat. J. Numer. Methods Fluids, 65, 166-190 (2011) · Zbl 1428.76103
[32] Griebel, M.; Schweitzer, M., A particle-partition of unity method. Part V: boundary conditions, (Hildebrandt, S.; Karcher, H., Geometric Analysis and Nonlinear Partial Differential Equations (2004), Springer), 519-542 · Zbl 1033.65102
[33] Embar, A.; Dolbow, J.; Harari, I., Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements, International Journal for Numerical Methods in Engineering, 83, 877-898 (2010) · Zbl 1197.74178
[34] Dolbow, J.; Harari, I., An efficient finite element method for embedded interface problems, International Journal for Numerical Methods in Engineering, 78, 229-252 (2009) · Zbl 1183.76803
[35] Annavarapu, C.; Hautefeuille, M.; Dolbow, J., A robust Nitsche’s formulation for interface problems, Comput. Methods Appl. Mech. Engrg., 225, 44-54 (2012) · Zbl 1253.74096
[36] Annavarapu, C.; Hautefeuille, M.; Dolbow, J., A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface, Computer Methods in Applied Mechanics and Engineering, 268, 417-436 (2014) · Zbl 1295.74096
[37] Jiang, W.; Annavarapu, C.; Dolbow, J.; Harari, I., A robust Nitsche’s formulation for interface problems with spline-based finite elements, International Journal for Numerical Methods in Engineering, 104, 676-696 (2015) · Zbl 1352.65515
[38] Codina, R., A stabilized finite element method for generalized stationary incompressible flows, Computer Methods in Applied Mechanics and Engineering, 190, 2681-2706 (2001) · Zbl 0996.76045
[39] Lew, A.; Buscaglia, G., A discontinuous Galerkin-based immersed boundary method, International Journal for Numerical Methods in Engineering, 76, 427-454 (2008) · Zbl 1195.76258
[40] Baiges, J.; Codina, R.; Henke, F.; Shahmiri, S.; Wall, W., A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes, International Journal for Numerical Methods in Engineering, 90, 636-658 (2012) · Zbl 1242.76108
[41] Kollmannsberger, S.; Özcan, A.; Baiges, J.; Ruess, M.; Rank, E.; Reali, A., Parameter-free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non-conforming patches, International Journal for Numerical Methods in Engineering, 101, 670-699 (2015) · Zbl 1352.65520
[42] Oden, J.; Babuŝka, I.; Baumann, C., A discontinuous hp finite element method for diffusion problems, J. Comput. Phys., 146, 491-519 (1998) · Zbl 0926.65109
[43] Baumann, C.; Oden, J., A discontinuous hp finite element method for convection-diffusion problems, Computer Methods in Applied Mechanics and Engineering, 175, 311-341 (1999) · Zbl 0924.76051
[44] Baumann, C.; Oden, J., A discontinuous hp finite element method for the Euler and Navier-Stokes equations, International Journal for Numerical Methods in Fluids, 31, 79-95 (1999) · Zbl 0985.76048
[45] Prudhomme, S.; Pascal, F.; Oden, J.; Romkes, A., A priori error estimate for the Baumann-Oden version of the discontinuous Galerkin method, C. R. Acadé. Sci., Paris I, 332, 851-856 (2001) · Zbl 1007.65084
[46] Arnold, D.; Brezzi, F.; Cockburn, B.; Marini, D., Discontinuous Galerkin methods for elliptic problems, (Discontinuous Galerkin Methods (2000), Springer), 89-101 · Zbl 0948.65127
[47] Arnold, D.; Brezzi, F.; Cockburn, B.; Marini, D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749-1779 (2002) · Zbl 1008.65080
[48] Rivière, B.; Wheeler, M.; Girault, V., Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. part i, Comput. Geosci., 3, 337-360 (1999) · Zbl 0951.65108
[49] Rivière, B.; Wheeler, M.; Girault, V., A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., 39, 902-931 (2001) · Zbl 1010.65045
[50] Larson, M.; Niklasson, A., Analysis of a nonsymmetric discontinuous Galerkin method for elliptic problems: stability and energy error estimates, SIAM J. Numer. Anal., 42, 252-264 (2004) · Zbl 1078.65106
[51] Atkins, H.; Shu, C.-W., Analysis of the discontinuous Galerkin method applied to the diffusion operator, (14th AIAA Computational Fluid Dynamics Conference (1999))
[52] Kirby, R.; Karniadakis, G., Selecting the numerical flux in discontinuous Galerkin methods for diffusion problems, J. Sci. Comput., 22, 385-411 (2005) · Zbl 1104.76060
[53] Heimann, F.; Engwer, C.; Ippisch, O.; Bastian, P., An unfitted interior penalty discontinuous Galerkin method for incompressible Navier-Stokes two-phase flow, Inernat. J. Numer. Methods Fluids, 71, 269-293 (2013)
[54] Verkaik, A.; Hulsen, M.; Bogaerds, A.; van de Vosse, F., An overlapping domain technique coupling spectral and finite elements for fluid-structure interaction, Comput. & Fluids, 123, 235-245 (2015)
[55] Burman, E., A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions, SIAM J. Numer. Anal., 50, 1959-1981 (2012) · Zbl 1262.65165
[56] Boiveau, T.; Burman, E., A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity, IMA J. Numer. Anal., drv042 (2015)
[57] Urquiza, J.; Garon, A.; Farinas, M.-I., Weak imposition of the slip boundary condition on curved boundaries for Stokes flow, J. Comput. Phys., 256, 748-767 (2014) · Zbl 1349.76277
[58] Chouly, F.; Hild, P.; Renard, Y., Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments, Math. Comp., 84, 1089-1112 (2015) · Zbl 1308.74113
[59] Johansson, A.; Garzon, M.; Sethian, J., A three-dimensional coupled Nitsche and level set method for electrohydrodynamic potential flows in moving domains, J. Comput. Phys., 309, 88-111 (2016) · Zbl 1351.76063
[60] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118
[61] Bastian, P.; Engwer, C., An unfitted finite element method using discontinuous Galerkin, International Journal for Numerical Methods in Engineering, 79, 1557-1576 (2009) · Zbl 1176.65131
[62] Cottrell, J.; Hughes, T.; Bazilevs, Y., Isogeometric Analysis: Towards Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[63] Schillinger, D., The \(p\)- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis (2012), Technische Universität München, (Dissertation)
[64] Hughes, T., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000), Dover Publications · Zbl 1191.74002
[65] Brezzi, F.; Hughes, T.; Suli, E., Variational approximation of flux in conforming finite element methods for elliptic partial differential equations: a model problem, Rend. Mat. Acc. Lincei, 9, 167-183 (2001)
[66] Bazilevs, Y.; Hughes, T., Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput. & Fluids, 36, 12-26 (2007) · Zbl 1115.76040
[67] Timoshenko, S.; Woinowsky-Krieger, S., Theory of Plates and Shells (1959), McGraw-Hill · Zbl 0114.40801
[68] Harari, I.; Shavelzon, E., Embedded kinematic boundary conditions for thin plate bending by Nitsche’s approach, International Journal for Numerical Methods in Engineering, 92, 99-114 (2012) · Zbl 1352.74162
[70] Schillinger, D.; Evans, J.; Frischmann, F.; Hiemstra, R.; Hsu, M.-C.; Hughes, T., A collocated \(C{}^0\) finite element method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics, International Journal for Numerical Methods in Engineering, 102, 576-631 (2015) · Zbl 1352.74433
[71] Nübel, V., Die adaptive rp-Methode für elastoplastische Probleme (2005), Technische Universität München, (Dissertation)
[72] Rivière, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation (2008), SIAM · Zbl 1153.65112
[73] Schillinger, D.; Evans, J.; Reali, A.; Scott, M.; Hughes, T., Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Computer Methods in Applied Mechanics and Engineering, 267, 170-232 (2013) · Zbl 1286.65174
[74] Auricchio, F.; Beirão da Veiga, L.; Hughes, T.; Reali, A.; Sangalli, G., Isogeometric collocation for elastostatics and explicit dynamics, Computer Methods in Applied Mechanics and Engineering, 249-252, 2-14 (2012) · Zbl 1348.74305
[75] Kiendl, J.; Auricchio, F.; da Veiga, L. B.; Lovadina, C.; Reali, A., Isogeometric collocation methods for the Reissner-Mindlin plate problem, Computer Methods in Applied Mechanics and Engineering, 284, 489-507 (2015)
[76] Schillinger, D.; Borden, M.; Stolarski, H., Isogeometric collocation for phase-field fracture models, Computer Methods in Applied Mechanics and Engineering, 284, 583-610 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.