×

zbMATH — the first resource for mathematics

Cam-Clay plasticity. VIII: A constitutive framework for porous materials with evolving internal structure. (English) Zbl 1439.74059
Summary: Natural geomaterials often exhibit pore size distributions with two dominant porosity scales. Examples include fractured rocks where the dominant porosities are those of the fractures and rock matrix, and aggregated soils where the dominant porosities are those of the micropores and macropores. We develop a constitutive framework for this type of materials that covers both steady-state and transient fluid flow responses. The framework relies on a thermodynamically consistent effective stress previously developed for porous media with two dominant porosity scales. We show that this effective stress is equivalent to the weighted sum of the individual effective stresses in the micropores and macropores, with the weighting done according to the pore fractions. This partitioning of the effective stress into two single-porosity effective stresses allows fluid pressure dissipation at the macropores and micropores to be considered separately, with important implications for individual characterization of the hardening responses at the two pore scales. Experimental data suggest that the constitutive framework captures the laboratory responses of aggregated soils more accurately than other models previously reported in the literature. Numerical simulations of boundary-value problems reveal the capability of the framework to capture the effect of secondary compression as the micropores discharge fluids into the macropores.
For Part VII, see [the first author et al., Comput. Methods Appl. Mech. Eng. 261–262, 66–82 (2013; Zbl 1286.74027)].

MSC:
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[2] Delage, P.; Audiguier, M.; Cui, Y.-J.; Howat, M. D., Microstructure of compacted silt, Can. Geotech. J., 33, 150-158 (1996)
[3] Didwania, A. K., Micromemechanical basis of concept of effective stress, J. Eng. Mech., 128, 864-868 (2002)
[4] Gens, A.; Guimarães, L. N.; Sánchez, M.; Valleján, B., Coupled analysis of double porosity swelling clays, (Borja, R. I., Multiscale and Multiphysics Processes in Geomechanics (2011), Springer-Verlag), 85-88
[5] Mehrabian, A.; Abousleiman, Y. N., Gassmann equations the constitutive relations for multiple-porosity and multiple-permeability poroelasticity with applications to oil and gas shale, Int. J. Numer. Anal. Methods Geomech., 39, 1547-1569 (2015)
[6] Abousleiman, Y. N.; Hoang, S. K.; Liu, C., Anisotropic porothermoelastic solution and hydro-thermal effects on fracture width in hydraulic fracturing, Int. J. Numer. Anal. Methods Geomech., 38, 493-517 (2014)
[7] Bennett, K. C.; Berla, L. A.; Nix, W. D.; Borja, R. I., Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales, Acta Geotech., 10, 1-14 (2015)
[8] Pouya, A., A finite element method for modeling coupled flow and deformation in porous fractured media, Int. J. Numer. Anal. Methods Geomech., 39, 1836-1852 (2015)
[9] Silvestre, J. R.; Vargas, E.; Vaz, L. E.; Soares, A. C., Modelling of coupled fluid-mechanical problems in fractured geological media using enriched finite elements, Int. J. Numer. Anal. Methods Geomech., 39, 1104-1140 (2015)
[10] Semnani, S. J.; White, J. A.; Borja, R. I., Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity, Int. J. Numer. Anal. Methods Geomech. (2016)
[11] Tjioe, M.; Borja, R. I., On the pore-scale mechanisms leading to brittle and ductile deformation behavior of crystalline rocks, Int. J. Numer. Anal. Methods Geomech., 39, 1165-1187 (2015)
[12] Wang, L.; Pouya, A.; Bornert, M.; Halphen, B., Modelling the internal stress field in argillaceous rocks under humidification/desiccation, Int. J. Numer. Anal. Methods Geomech., 38, 1664-1682 (2014)
[13] Vu, M.-N.; Pouya, A.; Seyedi, D. M., Theoretical and numerical study of the steady-state flow through finite fractured porous media, Int. J. Numer. Anal. Methods Geomech., 38, 221-235 (2014)
[14] Zhu, C.; Arson, C., A thermo-mechanical damage model for rock stiffness during anisotropic crack opening and closure, Acta Geotech., 9, 847-867 (2014)
[15] Tjioe, M.; Borja, R. I., Pore-scale modeling of deformation and shear band bifurcation in porous crystalline rocks, Internat. J. Numer. Methods Engrg. (2016)
[16] Behnia, M.; Goshtasbi, K.; Marji, M. F.; Golshani, A., Numerical simulation of interaction between hydraulic and natural fractures in discontinuous media, Acta Geotech., 10, 533-546 (2015)
[17] Della Vecchia, G.; Dieudonné, A.-C.; Jommi, C.; Charlier, R., Accounting for evolving pore size distribution in water retention models for compacted clays, Int. J. Numer. Anal. Methods Geomech., 39, 702-723 (2014)
[18] Do, N.-A.; Dias, D.; Oreste, P.; Djeran-Maigre, I., Three-dimensional numerical simulation for mechanized tunnelling in soft ground: the influence of the joint pattern, Acta Geotech., 9, 673-694 (2014)
[19] Shi, X. S.; Herle, I., Analysis of the compression behavior of artificial lumpy composite materials, Int. J. Numer. Anal. Methods Geomech. (2016)
[20] Shi, X. S.; Herle, I., Numerical simulation of lumpy soils using a hypoplastic model, Acta Geotech. (2016)
[21] Xie, K.-H.; Xia, C.-Q.; An, R.; Ying, H.-W.; Wu, H., A study on one-dimensional consolidation of layered structured soils, Int. J. Numer. Anal. Methods Geomech., 40, 1081-1098 (2016)
[22] Park, D. S.; Kutter, B., Sensitive bounding surface constitutive model for structured clay, Int. J. Numer. Anal. Methods Geomech. (2016)
[23] Shen, W.; He, Z.; Dormieux, L.; Kondo, D., Effective strength of saturated double porous media with a Drucker-Prager solid phase, Int. J. Numer. Anal. Methods Geomech., 38, 281-296 (2014)
[24] Koliji, A.; Laloui, L.; Cusinier, O.; Vulliet, L., Suction induced effects on the fabric of a structured soil, Transp. Porous Media, 64, 261-278 (2006)
[25] Koliji, A.; Laloui, L.; Vulliet, L., Constitutive modeling of unsaturated aggregated soils, Int. J. Numer. Anal. Methods Geomech., 34, 1846-1876 (2010) · Zbl 1273.74257
[26] Koliji, A.; Vulliet, L.; Laloui, L., Structural characterization of unsaturated aggregated soil, Can. Geotech. J., 47, 297-311 (2010) · Zbl 1273.74257
[27] Liu, M. D.; Carter, J. P., A structured Cam Clay model, Can. Geotech. J., 39, 1313-1332 (2002)
[28] Kavvadas, M.; Amorosi, A., A constitutive model for structured soils, Géotechnique, 50, 263-273 (2000)
[29] Koliji, A.; Lehmann, P.; Vulliet, L.; Laloui, L.; Carminati, A.; Vontobel, P.; Hassanein, R., Assessment of structural evolution of aggregated soil using neutron tomography, Water Resour. Res., 44, W00C07 (2009)
[30] Koliji, A., Mechanical behaviour of unsaturated aggregated soils (2008), Ecole Polytechnique Fédérale de Lausanne, No. 4011
[31] Koliji, A.; Vulliet, L.; Laloui, L., New basis for the constitutive modelling of aggregated soils, Acta Geotech., 3, 61-69 (2008)
[32] Barrenblatt, G.; Zheltov, I.; Kochina, I., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24, 1286-1303 (1960) · Zbl 0104.21702
[33] Barrenblatt, G., On certain boundary value problems for the equation of seepage of liquid in fissured rock, J. Appl. Math. Mech., 27, 513-518 (1963)
[34] Khalili, N.; Valliappan, S., Unified theory of flow and deformation in double porous media, Eur. J. Mech. A Solids, 15, 321-336 (1996) · Zbl 0942.74013
[35] Callari, C.; Federico, F., FEM validation of a double porosity elastic model for consolidation of structurally complex clayey soils, Int. J. Numer. Anal. Methods Geomech., 24, 367-402 (2000) · Zbl 0973.74634
[36] Pao, W. K.S.; Lewis, R. W., Three-dimensional finite element simulation of three phase flow in a deforming fissured reservoir, Comput. Methods Appl. Mech. Engrg., 191, 2631-2659 (2002) · Zbl 1138.76387
[37] Khalili, N.; Witt, R.; Laloui, L.; Vulliet, L.; Koliji, A., Effective stress in double porous media with two immiscible fluids, Geophys. Res. Lett., 32, L15309 (2005)
[38] Hutter, K.; Laloui, L.; Vulliet, L., Thermodynamically based mixture models of saturated and unsaturated soils, Mech. Cohesive-frictional Mater., 4, 295-338 (1999)
[39] Hassanizadeh, S. M.; Gray, W. G., Mechanics and thermodynamics of multiphase flow in porous-media including interphase boundaries, Adv. Water Resour., 13, 169-186 (1990)
[40] Gray, W. G.; Schrefler, B. A., Thermodynamic approach to effective stress in partially saturated porous media, Eur. J. Mech. A Solids, 20, 521-538 (2001) · Zbl 1034.74019
[41] Gray, W. G.; Schrefler, B. A., Analysis of the solid phase stress tensor in multiphase porous media, Int. J. Numer. Anal. Methods Geomech., 31, 541-581 (2007) · Zbl 1196.74040
[42] Borja, R. I., Cam-Clay plasticity, Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media, Comput. Methods Appl. Mech. Engrg., 193, 5301-5338 (2004) · Zbl 1112.74430
[43] Borja, R. I., On the mechanical energy and effective stress in saturated and unsaturated porous continua, Int. J. Solids Struct., 43, 1764-1786 (2006) · Zbl 1120.74446
[44] Houlsby, G. T., The work input to a granular material, Géotechnique, 29, 354-358 (1979)
[45] Houlsby, G. T., The work input to an unsaturated granular material, Géotechnique, 47, 193-196 (1997)
[46] Borja, R. I.; Koliji, A., On the effective stress in unsaturated porous continua with double porosity, J. Mech. Phys. Solids, 57, 1182-1193 (2009) · Zbl 1425.74310
[47] Gerke, H. H., Preferential flow descriptions for structured soils, J. Plant Nutrition Soil Sci., 169, 382-400 (2006)
[48] Šimůnek, J.; Jarvis, N. J.; van Genuchten, M. T.; Gardenas, A., Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone, J. Hydrol., 272, 14-35 (2003)
[49] Carminati, A.; Kaestner, A.; Lehmann, P.; Flühler, H., Unsaturated water flow across soil aggregate contacts, Adv. Water Resour., 31, 1221-1232 (2008)
[50] Burland, J. B., On the compressibility and shear strength of natural clays, Géotechnique, 40, 329-378 (1990)
[51] Anagnostopoulos, A. G.; Kalteziotis, N.; Tsiambaos, G. K.; Kavvadas, Geotechnical properties of the Corinth Canal marls, Geotech. Geol. Eng., 9, 1-26 (1991)
[52] Alonso, E. E.; Gens, A.; Josa, A., A constitutive model for partially saturated soils, Géotechnique, 40, 405-430 (1990)
[53] Choo, J.; White, J. A.; Borja, R. I., Hydromechanical modeling of unsaturated flow in double porosity media, Int. J. Geomech. (2016)
[54] Butterfield, R., A natural compression law for soils, Géotehcnique, 29, 469-480 (1979)
[55] Borja, R. I., Plasticity Modeling and Computation (2013), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1279.74003
[56] Borja, R. I.; Alarcón, E., A mathematical framework for finite strain elastoplastic consolidation Part 1: Balance laws, variational formulation, and linearization, Comput. Methods Appl. Mech. Engrg., 122, 145-171 (1995) · Zbl 0852.73051
[57] Borja, R. I.; Tamagnini, C.; Alarcón, E., Elastoplastic consolidation at finite strain part 2: finite element implementation and numerical examples, Comput. Methods Appl. Mech. Engrg., 1259, 103-122 (1998) · Zbl 0941.74057
[58] Benkemoun, N.; Gelet, R.; Roubin, E.; Colliat, J.-B., Poroelastic two-phase material modeling: theoretical formulation and embedded finite element method implementation, Int. J. Numer. Anal. Methods Geomech., 39, 1255-1275 (2015)
[59] Choo, J.; Borja, R. I., Stabilized mixed finite elements for deformable porous media with double porosity, Comput. Methods Appl. Mech. Engrg., 293, 131-154 (2015)
[60] Wang, K.; Sun, W., A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain, Comput. Methods Appl. Mech. Engrg., 304, 546-583 (2016)
[61] Goudarzi, M.; Mohammadi, S., Weak discontinuity in porous media: an enriched EFG method for fully coupled layered porous media, Int. J. Numer. Anal. Methods Geomech., 38, 1792-1822 (2014)
[62] Guo, N.; Zhao, J., Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soil, Comput. Methods Appl. Mech. Engrg., 305, 37-61 (2016)
[63] White, J. A.; Castelletto, N.; Tchelepi, H. A., Block-partitioned solvers for coupled poromechanics: A unified framework, Comput. Methods Appl. Mech. Engrg., 303, 55-74 (2016)
[64] Remij, E. W.; Remmers, J. J.C.; Huyghe, J. M.; Smeulders, D. M.J., The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials, Comput. Methods Appl. Mech. Engrg., 286, 293-312 (2015)
[65] Meschke, G.; Leonhart, D., A Generalized Finite Element Method for hydro-mechanically coupled analysis of hydraulic fracturing problems using space-time variant enrichment functions, Comput. Methods Appl. Mech. Engrg., 290, 438-465 (2015)
[66] Sun, W.; Chen, Q.; Ostien, J. T., Modeling the hydro-mechanical responses of strip and circular punch loadings on water-saturated collapsible geomaterials, Acta Geotech., 9, 903-934 (2014)
[67] Sun, W., A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain, Internat. J. Numer. Methods Engrg., 103, 798-839 (2015) · Zbl 1352.76116
[68] Song, X.; Borja, R. I., Mathematical framework for unsaturated flow in the finite deformation range, Internat. J. Numer. Methods Engrg., 14, 658-682 (2014) · Zbl 1352.76115
[69] Song, X.; Borja, R. I., Finite deformation and fluid flow in unsaturated soils with random heterogeneity, Vadose Zone J., 13 (2014)
[70] Bear, J., Dynamics of Fluids in Porous Media (1972), Dover Publications, Inc.: Dover Publications, Inc. New York · Zbl 1191.76001
[71] Warren, J.; Root, P., The behavior of naturally fractured reservoirs, SPE J., 3, 245-255 (1963)
[72] Dykhuizen, R. C., A new coupling term for dual-porosity models, Water Resour. Res., 26, 351-356 (1990)
[73] Gerke, H. H.; van Genuchten, M. T., A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media, Water Resour. Res., 29, 305-319 (1993)
[74] Haggerty, R.; Gorelick, S. M., Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity, Water Resour. Res., 31, 2383-2400 (1995)
[75] Köhne, J. M.; Mohanty, B. P.; Šimůnek, J.; Gerke, H. H., Numerical evaluation of a second-order water transfer term for variably saturated dual-permeability models, Water Resour. Res., 40, W07409 (2004)
[76] Sarma, P.; Aziz, K., New transfer functions for simulation of naturally fractured reservoirs with dual porosity models, SPE J., 11, 328-340 (2006)
[77] Trottier, N.; Delay, F.; Bildstein, O.; Ackerer, P., Inversion of a dual-continuum approach to flow in a karstified limestone: insight into aquifer heterogeneity revealed by well-test interferences, J. Hydrol., 508, 157-169 (2014)
[78] Argyris, J. H.; Faust, G.; Szimmat, J.; Warnke, E. P.; Willam, K. J., Recent developments in the finite element analysis of prestressed concrete reactor vessels, Nucl. Eng. Des., 28, 42-75 (1974)
[79] Gudehus, G., Elastoplastische Stoffgleichungen für trockenen Sand, Ingenieur-Archiv., 42, 151-169 (1973) · Zbl 0259.73046
[80] Navarro, V.; Alonso, E. E., Secondary compression of clays as a local dehydration process, Géotechnique, 51, 859-869 (2001)
[81] Murad, M.; Guerreiro, J. N.; Loula, A. F.D., Micromechanical computational modeling of secondary consolidation and hereditary creep in soils, Comput. Methods Appl. Mech. Engrg., 190, 1985-2016 (2001) · Zbl 1114.74490
[82] Cosenza, P.; Korošak, D., Secondary consolidation of clay as an anomalous diffusion process, Int. J. Numer. Anal. Methods Geomech., 38, 1231-1246 (2014)
[83] Callisto, L.; Calabresi, G., Mechanical behaviour of a natural soft clay, Géotechnique, 48, 495-513 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.