×

Geometrically non-linear static analysis of functionally graded material shells with a discrete double directors shell element. (English) Zbl 1439.74174

Summary: A general shell model, including both theories of thin and thick shells, Kirchhoff-Love and Reissner-Mindlin undergoing finite rotations is presented. Based on Higher-order shear theory, where the fiber is cubic plane, the developed model does not need any transverse shear coefficients. The implementation is applicable to the analysis of isotropic and functionally graded shells undergoing fully geometrically nonlinear mechanical response. Material properties of the shells are assumed to be graded in the thickness direction according to a simple power-law and sigmoid distribution. The accuracy and overall robustness of the developed shell element are illustrated through the solution of several non trivial benchmark problems taken from the literature. The effect of the material distribution on the deflections and stresses is analyzed.

MSC:

74K25 Shells
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hrabok, M. M.; Hrudey, T. M., A review and catalogue of plate bending finite elements, Comput. Struct., 19, 3, 479-495 (1983)
[2] Yang, H. T.Y.; Saigal, S.; Liaw, D. G., Advances of thin shell finite elements and some applications - version i, Comput. Struct., 35, 4, 481-504 (1990) · Zbl 0729.73196
[3] Lardeur, P.; Batoz, J. L., Composite plate analysis using a new discrete shear triangular finite element, Internat. J. Numer. Methods Engrg., 27, 343-359 (1989) · Zbl 0724.73239
[4] Vlachoutsis, S., Shear correction factors for plates and shells, Internat. J. Numer. Methods Engrg., 33, 1537-1552 (1992) · Zbl 0775.73172
[5] Hajlaoui, A.; Jarraya, A.; El Bikri, K.; Dammak, F., Buckling analysis of functionally graded materials structures with enhanced solid-shell elements and transverse shear correction, Compos. Struct., 132, 87-97 (2015)
[6] Reddy, J. N., Analysis of functionally graded plates, Internat. J. Numer. Methods Engrg., 47, 663-684 (2000) · Zbl 0970.74041
[7] Chi, S.-H.; Chung, Y.-L., Mechanical behavior of functionally graded material plates under transverse load. Part 1: Analysis, Int. J. Solids Struct., 43, 3657-3674 (2006) · Zbl 1121.74396
[8] Cheng, Z. Q.; Batra, R. C., Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates, J. Sound Vib., 229, 4, 879-895 (2000) · Zbl 1235.74209
[9] Matsunaga, H., Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory, Compos. Struct., 82, 499-512 (2008)
[10] Vel, S. S.; Batra, R. C., Three-dimensional exact solution for the vibration of functionally graded rectangular plates, J. Sound Vib., 272, 703-730 (2004)
[11] Simo, J. C.; Fox, D. D.; Rifai, M. S., On a stress resultant geometrically exact shell model. Part ii: The linear theory, Comput. Methods Appl. Mech. Engrg., 73, 53-92 (1989) · Zbl 0724.73138
[12] Tornabene, F., Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution, Comput. Methods Appl. Mech. Engrg., 198, 2911-2935 (2009) · Zbl 1229.74062
[13] Mantari, J. L.; Oktem, A. S.; Soares, C. G., Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory, Compos. Struct., 94, 37-49 (2011)
[14] Mantari, J. L.; Soares, C. G., Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells, Composites B, 56, 126-136 (2014)
[15] Barbero, E. J.; Reddy, J. N., Modeling of delamination in composite laminates using a layer-wise plate theory, Int. J. Solids Struct., 28, 3, 373-388 (1991) · Zbl 0825.73422
[16] Mulmule, S.; Rath, A. K., Application of the multi-director displacement field approach for sandwich shell structure analysis, Compos. Struct., 48, 653-660 (1993) · Zbl 0801.73048
[17] Lo, K. H.; Christensen, R. M.; Wu, E. M., Stress solution determination for high order plate theory, Int. J. Solids Struct., 14, 655-662 (1978) · Zbl 0381.73057
[18] Carrera, E.; Brischetto, S.; Cinefra, M.; Soave, M., Refined and advanced models for multilayered plates and shells embedding functionally graded material layers, Mech. Adv. Mater. Struct., 17, 8, 603-621 (2010)
[19] Cinefra, M.; Carrera, E.; Della Croce, L.; Chinosi, C., Refined shell elements for the analysis of functionally graded structures, Compos. Struct., 94, 415-422 (2012)
[20] Kulikov, G. M.; Plotnikova, S. V., Non-linear exact geometry 12-node solid-shell element with three translational degrees of freedom per node, Internat. J. Numer. Methods Engrg., 88, 1363-1389 (2011) · Zbl 1242.74135
[21] Kulikov, G. M.; Plotnikova, S. V., Three-dimensional exact analysis of piezoelectric laminates plates via a sampling surfaces method, Int. J. Solids Struct., 50, 1916-1929 (2013)
[22] Kulikov, G. M.; Plotnikova, S. V., A sampling surfaces method and its application to three-dimensional exact solution for piezoelectric laminated shells, Int. J. Solids Struct., 50, 1930-1943 (2013)
[23] Simo, J. C.; Fox, D. D.; Rifai, M. S., Resultant geometrically exact shell model. Part iii: Computational aspects of the non-linear theory, Comput. Methods Appl. Mech. Engrg., 79, 21-70 (1990) · Zbl 0746.73015
[24] Başar, Y.; Ding, Y.; Schultz, R., Refined shear-deformation models for composite laminates with finite rotations, Int. J. Solids Struct., 30, 19, 2611-2638 (1993) · Zbl 0794.73036
[25] Phung-Van, P.; Nguyen-Thoi, T.; Luong-Van, H.; Lieu-Xuan, Q., Geometrically nonlinear analysis of functionally graded plate using a cell-based smoothed three-node plate element (CS-MIN3) based on the C0-HSDT, Comput. Methods Appl. Mech. Engrg., 270, 15-36 (2014) · Zbl 1296.74124
[26] Arciniega, R. A.; Reddy, J. N., Large deformation analysis of functionally graded shells, Int. J. Solids Struct., 44, 2036-2052 (2006) · Zbl 1108.74038
[27] Payette, G. S.; Reddy, J. N., A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures, Comput. Methods Appl. Mech. Engrg., 278, 664-704 (2014) · Zbl 1423.74579
[28] Wali, M.; Hajlaoui, A.; Dammak, F., Discrete double directors shell element for the functionally graded material shell structures analysis, Comput. Methods Appl. Mech. Engrg., 278, 388-403 (2014) · Zbl 1423.74585
[29] Wali, M.; Hentati, T.; Jarraya, A.; Dammak, F., Free vibration analysis of FGM shell structures with a discrete double directors shell element, Compos. Struct., 125, 295-303 (2015)
[30] Frikha, A.; Wali, M.; Hajlaoui, A.; Dammak, F., Dynamic response of functionally graded material shells with a discrete double directors shell element, Compos. Struct., 154, 385-395 (2016)
[31] Levinson, M., An accurate simple theory of statics and dynamics of elastic plates, Mech. Res. Commun., 7, 340-350 (1980) · Zbl 0458.73035
[32] Bickford, W. B., A consistent higher order beam theory, Dev. Theor. Appl. Mech., 11, 137-150 (1982)
[33] Reddy, J. N., A refined nonlinear theory of plates with transverse shear deformation, Int. J. Solids Struct., 20, 881-896 (1984) · Zbl 0556.73064
[35] Shi, G., A new simple third-order shear deformation theory of plates, Int. J. Solids Struct., 44, 4399-4417 (2007) · Zbl 1356.74123
[36] Dammak, F.; Abid, S.; Gakwaya, A.; Dhatt, G., A formulation of the non linear discrete Kirchhoff quadrilateral shell element with finite rotations and enhanced strains, Rev. Europeenne des Elements Finis, 14, 7-31 (2005) · Zbl 1186.74104
[37] Bathe, K. J.; Dvorkin, E., A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, Internat. J. Numer. Methods Engrg., 21, 367-383 (1985) · Zbl 0551.73072
[38] Su, Z.; Jin, G.; Shi, S.; Ye, T.; Jia, X., A unified solution for vibration analysis of functionally graded cylindrical, conical shells and annular plates with general boundary conditions, Int. J. Mech. Sci., 80, 62-80 (2014)
[39] Saleeb, A. F.; Chang, T. Y.; Graf, W.; Yingyeunyong, S., A hybrid/mixed model for non-linear shell analysis and its applications to large-rotation problem, Internat. J. Numer. Methods Engrg., 29, 407-446 (1990) · Zbl 0724.73227
[40] Kim, K.-D.; Lomboy, G. R.; Han, S.-C., Geometrically nonlinear analysis of functionally graded material (FGM) plates and shells using a four-node quasi-conforming shell element, J. Compos. Mater., 42, 485-511 (2008)
[41] Buechter, N.; Ramm, E., Shell theory versus degeneration—a comparison in large rotation finite element analysis, Internat. J. Numer. Methods Engrg., 34, 39-59 (1992) · Zbl 0760.73041
[42] Wriggers, P.; Gruttmann, F., Thin shells with finite rotations formulated in biot stressed: Theory and finite element formulation, Internat. J. Numer. Methods Engrg., 36, 2049-2071 (1993) · Zbl 0779.73074
[44] Simo, J. C.; Rifai, M. S.; Fox, D. D., On a stress resultant geometrically exact shell model. Part iv: Variable thickness shells with through-the-thickness stretching, Comput. Methods Appl. Mech. Engrg., 81, 91-126 (1990) · Zbl 0746.73016
[45] Sze, K. Y.; Liu, X. H.; Lo, S. H., Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elem. Anal. Des., 40, 11, 1551-1569 (2004)
[46] Timoshenko, S. P.; Gere, J. M., Mechanics of Materials (1972), Von Vostran Reinhold: Von Vostran Reinhold New York
[47] Chi, S.-H.; Chung, Y.-L., Mechanical behavior of functionally graded material plates under transverse load. Part 2: Numerical results, Int. J. Solids Struct., 43, 3675-3691 (2006) · Zbl 1121.74397
[48] Praveen, G. N.; Reddy, J. N., Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, Int. J. Solids Struct., 35, 4457-4476 (1997) · Zbl 0930.74037
[49] Parisch, H., Large displacement of shells including material nonlinearities, Comput. Methods Appl. Mech. Engrg., 27, 183-214 (1980) · Zbl 0474.73092
[50] To, C. W.S.; Wang, B., Hybrid strain-based three-node flat triangular laminated composite shell elements for vibration analysis, J. Sound Vib., 211, 2, 277-291 (1998)
[51] Brank, B.; Damjanić, F. B.; Perić, D., On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells, Comput. Mech., 16, 341-359 (1995) · Zbl 0848.73060
[52] Arciniega, R. A.; Reddy, J. N., Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures, Comput. Methods Appl. Mech. Engrg., 196, 1048-1073 (2007) · Zbl 1120.74802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.