×

zbMATH — the first resource for mathematics

Stress-based shape and topology optimization with the level set method. (English) Zbl 1439.74294
Summary: This paper proposes a level set method to solve minimum stress and stress-constrained shape and topology optimization problems. The method solves a sub-optimization problem every iteration to obtain optimal boundary velocities. A \(p\)-norm stress functional is used to aggregate stresses in a single constraint. The shape sensitivity function is derived and a computational procedure based on a least squares interpolation approach is devised in order to compute sensitivities at the boundaries. Adaptive constraint scaling is used to enforce exact control of stress limits. Numerical results show that the method is able to solve the problem efficiently for single and multiple load cases obtaining solutions with smooth boundaries.

MSC:
74P15 Topological methods for optimization problems in solid mechanics
74A10 Stress
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Duysinx, P.; Bendsøe, M. P., Topology optimization of continuum structures with local stress constraints, Internat. J. Numer. Methods Engrg., 43, 8, 1453-1478 (1998) · Zbl 0924.73158
[2] Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D., Stress-based topology optimization for continua, Struct. Multidiscip. Optim., 41, 605-620 (2010)
[3] Bendsoe, M. P.; Sigmund, O., Topology Optimization - Theory, Methods and Applications (2003), Springer Verlag: Springer Verlag Berlin Heidelberg · Zbl 1059.74001
[4] Cheng, G. D.; Pedersen, P., On sufficiency conditions for optimal design based on extremum principles of mechanics, J. Mech. Phys. Solids, 45, 1, 135-150 (1997) · Zbl 0974.74548
[5] Bruggi, M., On an alternative approach to stress constraints relaxation in topology optimization, Struct. Multidiscip. Optim., 36, 125-141 (2008) · Zbl 1273.74397
[6] Moon, S. J.; Yoon, G. H., A newly developed qp-relaxation method for element connectivity parametrization to achieve stress-based topology optimization for geometrically nonlinear structures, Comput. Methods Appl. Mech. Engrg., 265, 226-241 (2013) · Zbl 1286.74076
[7] Yang, R. J.; Chen, C. J., Stress-based topology optimization, Struct. Optim., 12, 2, 98-105 (1996)
[9] Luo, Y.; Wang, M.; Kang, Z., An enhanced aggregation method for topology optimization with local stress constraints, Comput. Methods Appl. Mech. Engrg., 254, 31-41 (2013) · Zbl 1297.74098
[10] Verbart, A.; Langelaar, M.; van Keulen, F., A unified aggregation and relaxation approach for stress-constrained topology optimization, Struct. Multidiscip. Optim., 55, 2, 663-679 (2017)
[11] Jensen, K. E., Solving stress and compliance constrained volume minimization using anisotropic mesh adaptation, the method of moving asymptotes and a global p-norm, Struct. Multidiscip. Optim., 54, 831-841 (2016)
[12] Verbart, A.; Langelaar, M.; van Keulen, F., Damage approach: A new method for topology optimization with local stress constraints, Struct. Multidiscip. Optim., 53, 5, 1081-1098 (2015)
[13] Yoon, G. H., Stress-based topology optimization method for steady-state fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg., 278, 499-523 (2014) · Zbl 1423.74775
[14] Deaton, J. D.; Grandhi, R. V., Stress-based design of thermal structures via topology optimization, Struct. Multidiscip. Optim., 53, 253-270 (2016)
[15] van Miegroet, L.; Duysinx, P., Stress concentration minimization of 2d filets using x-fem and level set description, Struct. Multidiscip. Optim., 33, 4, 425-438 (2007)
[16] Allaire, G.; Jouve, F., Minimum stress optimal design with the level set method, Eng. Anal. Bound. Elem., 32, 909-918 (2008) · Zbl 1244.74104
[17] van Dijk, N. P.; Maute, K.; Langelaar, M.; van Keulen, F., Level-set methods for structural topology optimization: a review, Struct. Multidiscip. Optim., 48, 3, 437-472 (2013)
[18] Guo, X.; Zhang, W. S.; Wang, M. Y.; Wei, P., Stress-related topology optimization via level set approach, Comput. Methods Appl. Mech. Engrg., 200, 3439-3452 (2011) · Zbl 1230.74152
[19] Xia, Q.; Shi, T.; Liu, S.; Wang, M. Y., A level set solution to the stress-based structural shape and topology optimization, Comput. Struct., 90-91, 55-64 (2012)
[20] James, K. A.; Lee, E.; Martins, J. R.R. A., Stress-based topology optimization using an isoparametric level set method, Finite Elem. Anal. Des., 58, 20-30 (2012)
[21] Zhang, W. S.; Guo, X.; Wang, M. Y.; Wei, P., Optimal topology design of continuum structures with stress concentration alleviation via level set method, Internat. J. Numer. Methods Engrg., 93, 942-959 (2013) · Zbl 1352.74255
[23] Xia, Q.; Shi, T.; Liu, S.; Wang, M. Y., Optimization of stresses s in a local region for the maximization of sensitivity and minimization of cross - sensitivity of piezoresistive sensors, Struct. Multidiscip. Optim., 48, 927-938 (2013)
[24] Xia, Q.; Shi, T.; Liu, S.; Wang, M. Y., Shape and topology optimization for tailoring stress in a local region to enhance performance of piezoresistive sensors, Comput. Struct., 114-115, 98-105 (2013)
[25] Amstutz, S.; Novotny, A. A.; Neto, E. A.S., Topological derivative-based topology optimization of structures subject to Drucker-Prager stress constraints, Comput. Methods Appl. Mech. Engrg., 233-236, 123-136 (2012) · Zbl 1253.74078
[26] Suresh, K.; Takallozadeh, M., Stress-constrained topology optimization: a topological level-set approach, Struct. Multidiscip. Optim., 48, 2, 295-309 (2013)
[27] Lopes, C. G.; Novotny, A. A., Topology design of compliant mechanisms with stress constraints based on the topological derivative concept, Struct. Multidiscip. Optim., 54, 737-746 (2016)
[28] Wang, M. Y.; Li, L., Shape equilibrium constraint: a strategy for stress-constrained structural topology optimization, Struct. Multidiscip. Optim., 47, 335-352 (2013) · Zbl 1274.74410
[29] Li, L.; Wang, M. Y., Stress isolation through topology optimization, Struct. Multidiscip. Optim., 49, 761-769 (2014)
[30] Emmendoerfer, H.; Fancello, E. A., A level set approach for topology optimization with local stress constraints, Internat. J. Numer. Methods Engrg., 99, 129-156 (2014) · Zbl 1352.74238
[31] Emmendoerfer, H.; Fancello, E. A., Topology optimization with local stress constraint based on level set evolution via reaction-diffusion, Comput. Methods Appl. Mech. Engrg., 305, 62-88 (2016) · Zbl 1425.74373
[32] Cai, S.; Zhang, W.; Zhu, J.; Gao, T., Stress constrained shape and topology optimization with fixed mesh: A B-spline nite cell method combined with level set function, Comput. Methods Appl. Mech. Engrg., 278, 361-387 (2014) · Zbl 1423.74741
[33] Cai, S.; Zhang, W., Stress constrained topology optimization with free-form design domains, Comput. Methods Appl. Mech. Engrg., 289, 267-290 (2015) · Zbl 1423.74740
[34] Guo, X.; Zhang, W.; Zhong, W., Stress-related topology optimization of continuum structures involving multi-phase materials, Comput. Methods Appl. Mech. Engrg., 268, 632-655 (2014) · Zbl 1295.74081
[35] Polajnar, M.; Kosel, F.; Drazumeric, R., Structural optimization using global stress-deviation objective function via the level-set method, Struct. Multidiscip. Optim., 55, 91-104 (2017)
[36] Xia, Q.; Wang, M. Y.; Shi, T., A level set method for shape and topology optimization of both structure and support of continuum structures, Comput. Methods Appl. Mech. Engrg., 272, 340-353 (2014) · Zbl 1296.74084
[37] Xia, Q.; Shi, T., Optimization of structures with thin-layer functional device on its surface through a level set based multiple-type boundary method, Comput. Methods Appl. Mech. Engrg., 311, 56-70 (2016)
[38] Allaire, G.; Jouve, F.; Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 363-393 (2004) · Zbl 1136.74368
[39] Dunning, P.; Kim, H. A., Introducing the sequential linear programming level-set method for topology optimization, Struct. Multidiscip. Optim., 51, 3, 631-643 (2015)
[40] Sivapuram, R.; Dunning, P. D.; Kim, H. A., Simultaneous material and structural optimization by multiscale topology optimization, Struct. Multidiscip. Optim., 54, 5, 1267-1281 (2016)
[41] Kim, K. K.C. N.-H., Structural Sensitivity Analysis and Optimization, Vol. 1 (2005), Springer-Verlag: Springer-Verlag New York
[42] Dunning, P.; Kim, H. A.; Mullineux, G., Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid FEM and structural optimization, Finite Elem. Anal. Des., 47, 8, 933-941 (2011)
[43] Sethian, J. A., A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci., 93, 4, 1591-1595 (1996) · Zbl 0852.65055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.