×

A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. (English) Zbl 1439.92182

Summary: In the present paper, we study the dynamics of tuberculosis model using fractional order derivative in Caputo-Fabrizio sense. The number of confirmed notified cases reported by national TB program Khyber Pakhtunkhwa, Pakistan, from the year 2002 to 2017 are used for our analysis and estimation of the model biological parameters. The threshold quantity \(\mathcal{R}_0\) and equilibria of the model are determined. We prove the existence of the solution via fixed-point theory and further examine the uniqueness of the model variables. An iterative solution of the model is computed using fractional Adams-Bashforth technique. Finally, the numerical results are presented by using the estimated values of model parameters to justify the significance of the arbitrary fractional order derivative. The graphical results show that the fractional model of TB in Caputo-Fabrizio sense gives useful information about the complexity of the model and one can get reliable information about the model at any integer or non-integer case.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] World Health Organization Media Centre. Available: , Available from: http://apps.who.int/iris/bitstream/10665/136607/1/ccsbrief_pak_en.pdf.Accessed2016.
[2] T. Abdeljawad; D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, J. Report. Math. Phy., 80, 11-27 (2017) · Zbl 1384.26025
[3] T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Phy. A: Stat. Mech. Appl., 313, 1-12 (2017)
[4] T. Abdeljawad, Q. M. Al-Mdallal and M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Dis. Dyn. Nat. Soci., 2017 (2017), Art. ID 4149320, 8 pp. · Zbl 1373.39015
[5] T. Abdeljawad; D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 78, 1-9 (2017) · Zbl 1422.39048
[6] T. Abdeljawad; Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwalls inequality, J. Comp. App. Math., 339, 218-230 (2018) · Zbl 1472.39006
[7] T. Abdeljawad; and F. Madjidi, Lyapunov type inequalities for fractional difference operators with discrete Mittag-Leffler kernels of order \(\begin{document}2<a<5/2\end{document} \), J. Spec. Top., 226, 3355-3368 (2017)
[8] T. Abdeljawad; D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chao. Solit. Frac., 102, 106-110 (2017) · Zbl 1374.26011
[9] T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl. 10 (2017), 1098-1107. · Zbl 1412.47086
[10] P. Agarwal, et al., Fractional differential equations for the generalized MittagLeffler function, Adv. Diff. Equa., 2018 (2018), 58.
[11] J. F. G. Aguilar, Fundamental solutions to electrical circuits of non-integer order via fractional derivatives with and without singular kernels, Eur. Phys. J. Plus, 133, 1-20 (2018)
[12] M. Q. Al-Mdallal; S. Ahmed; A. Omer, Fractional-order Legendre-collocation method for solving fractional initial value problems, Appl. Math. Comp., 321, 74-84 (2018) · Zbl 1426.65110
[13] A. Atangana; D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20, 763-769 (2016)
[14] A. Atangana and J. F. G Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The Eur. Phy. Jour. Plus, 133 (2018), 166.
[15] A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (218), Art. 3, 21 pp. · Zbl 1406.65045
[16] M. Caputo; M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl, 2, 1-13 (2015)
[17] C. C. Chavez; Z. Feng, To treat or not to treat: the case o tuberculosis, Jour. Math. bio., 35, 629-656 (1997) · Zbl 0895.92024
[18] P. V. D. Driessche; J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Bios., 180, 29-48 (2002) · Zbl 1015.92036
[19] A. O. Egonmwan and D. Okuonghae, Analysis of a mathematical model for tuberculosis with diagnosis, J. Appl. Math. Comput., (2018), 1-34. · Zbl 1422.34147
[20] Z. Feng and C. C. Chavez, Mathematical Models for the Disease Dynamics of Tubeculosis, London: Gordon and Breach Science Publishers, 1998.
[21] M. A. Hajji; Q. Al-Mdallal, Numerical simulations of a delay model for immune system-tumor interaction, Sultan Qaboos Univ. Jour. Sci., 23, 19-31 (2018)
[22] Z. Hammouch; T. Mekkaoui, Chaos synchronization of a fractional nonautonomous system, Nonautonomous Dynamical Systems, 1, 61-71 (2014) · Zbl 1298.34093
[23] Z. Hammouch; T. Mekkaoui, Control of a new chaotic fractional-order system using Mittag-Leffler stability, Nonlinear Studies, 22, 565-577 (2015) · Zbl 1335.34097
[24] Z. Hammouch; T. Mekkaoui, Circuit design and simulation for the fractional-order chaotic behavior in a new dynamical system, Complex and Intelligent Systems, 4, 251-260 (2018)
[25] F. Jarad; T. Abdeljawad; Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos, Solitons and Fractals, 117, 16-20 (2018) · Zbl 1442.34016
[26] M. A. Khan; S. Ullah; M. F. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chao. Solit. Frac., 116, 227-238 (2018) · Zbl 1442.92150
[27] S. Kim; A. Aurelio; E. Jung, Mathematical model and intervention strategies for mitigating tuberculosis in the Philippines, J. Theo. bio., 443, 100-112 (2018) · Zbl 1397.92643
[28] J. Liu; T. Zhang, Global stability for a tuberculosis model, Math. Comp. Modelling, 54, 836-845 (2011) · Zbl 1225.34065
[29] J. Losada; J. J. Nieto, Properties of a New Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl, 2, 87-92 (2015)
[30] J. E. E. Martnez; J. F. G. Aguilar; C. C. Ramn; A. A. Melndez; P. P. Longoria, Synchronized bioluminescence behavior of a set of fireflies involving fractional operators of Liouville-Caputo type, Int. J. Biomath., 11, 1-24 (2018)
[31] J. E. E. Martnez, J. F. G. Aguilar, C. C. Ramn, A. A. Melndez and P. P. Longoria, A mathematical model of circadian rhythms synchronization using fractional differential equations system of coupled van der Pol oscillators, Int. J. Biomath., 11 (2018), 1850041, 25 pp.
[32] H. Y. Martnez; J. F. G. Aguilar, A new modified definition of Caputo Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM), J. Comp. Appl. Math., 346, 247-260 (2019) · Zbl 1402.26005
[33] S. C. Revelle; R. W. Lynn; F. Feldmann, Mathematical models for the economic allocation of tuberculosis control activities in developing nations, American Review of Respiratory Disease, 96, 893-909 (1967)
[34] K. M. Saad; J. F. G. Aguilar, Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel, Phy. A: Stat. Mech. Appl., 509, 703-716 (2018) · Zbl 1514.35469
[35] S. G. Samko, A. A. Kilbas, I. O. Marichev and others, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.
[36] J. Singh; D. Kumar; Z. Hammouch; A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316, 504-515 (2018) · Zbl 1426.68015
[37] J. Singh; D. Kumar; Z. Hammouch; A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316, 504-515 (2018) · Zbl 1442.92182
[38] S. Ullah; M. A. Khan; M. Farooq, A fractional model for the dynamics of TB virus, Chao. Solit. Fract., 116, 63-71 (2018)
[39] S. Ullah, M. A. Khan and M. F. Farooq, Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative, The Eur. Phy. Jour. Plus, 133 (2018), 313.
[40] H. Waaler; A. Geser; S. Andersen, he use of mathematical models in the study of the epidemiology of tuberculosis, American J. of Public Health and the Nations Health, 52, 1002-1013 (1962)
[41] S. R. Wallis, Mathematical models of tuberculosis reactivation and relapse, Front. microbiol., 7, 1-7 (2016) · Zbl 1314.92172
[42] J. Zhang; Y. Liand; X. Zhang, Mathematical modeling of tuberculosis data of China, J. Theor. Bio., 365, 159-163 (2015)
[43] National TB Control Program Pakistan (NTP), http://www.ntp.gov.pk/national_data.php.
[44] Pakistan Bureau of Statistics. Pakistan’s 6th census: Population of Major Cities 583 Census. 584, http://www.pbs.gov.pk/content/provisional-summary-results-6th-population-and-housing-census-2017-0, 2017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.