×

Improved conditioning of isogeometric analysis matrices for trimmed geometries. (English) Zbl 1440.74426

Summary: A stable basis for isogeometric analysis of trimmed models is obtained by combining extended B-splines with truncated hierarchical B-splines. While extended B-splines guarantee that the condition number of system matrices is independent of the location of a trimming curve, local refinement is used to improve the robustness of the procedure and the accuracy of the numerical results. The present extended B-spline construction works in the context of Galerkin and collocation methods. The paper focuses on the latter and introduces a new collocation scheme for truncated hierarchical B-splines. A proper transition between refinement levels is assured by a novel balancing algorithm that employs a simple criterion. The enhanced performance of the locally refined stabilization is verified by scalar Laplace and linear elasticity problems analyzed by a collocation based isogeometric boundary element method. The proposed approach yields excellent results and requires few refinement levels to improve the stabilization procedure and accuracy along trimming curves.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
74B05 Classical linear elasticity

Software:

ISOGAT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Marussig, B.; Hughes, T. J.R., A review of trimming in isogeometric analysis: Challenges, data exchange and simulation aspects, Arch. Comput. Methods Eng., 1-69 (2017)
[2] Höllig, K., (Finite Element Methods with B-Splines. Finite Element Methods with B-Splines, Frontiers in Applied Mathematics, vol. 26 (2003), SIAM) · Zbl 1020.65085
[3] Höllig, K.; Reif, U., Nonuniform web-splines, Comput. Aided Geom. Design, 20, 5, 277-294 (2003) · Zbl 1069.65502
[4] Höllig, K.; Reif, U.; Wipper, J., B-Spline approximation of Neumann problems, Mathematisches Institut A, University of Stuttgart (2001)
[5] Höllig, K.; Reif, U.; Wipper, J., Weighted extended B-spline approximation of Dirichlet problems, SIAM J. Numer. Anal., 39, 2, 442-462 (2002) · Zbl 0996.65119
[6] Apprich, C.; Höllig, K.; Hörner, J.; Reif, U., Collocation with WEBSplines, Adv. Comput. Math., 42, 4, 823-842 (2016) · Zbl 1348.65171
[7] Marussig, B.; Zechner, J.; Beer, G.; Fries, T.-P., Stable isogeometric analysis of trimmed geometries, Comput. Methods Appl. Mech. Engrg., 316, 497-521 (2016) · Zbl 1439.74487
[8] Giannelli, C.; Jüttler, B.; Speleers, H., THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. Design, 29, 7, 485-498 (2012) · Zbl 1252.65030
[9] Schillinger, D.; Evans, J. A.; Reali, A.; Scott, M. A.; Hughes, T. J.R., Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170-232 (2013) · Zbl 1286.65174
[10] Piegl, L. A.; Tiller, W., The NURBS Book (1997), Springer: Springer New York, NY, USA
[11] Rüberg, T.; Cirak, F., Subdivision-stabilised immersed b-spline finite elements for moving boundary flows, Comput. Methods Appl. Mech. Engrg., 209-212, 266-283 (2012) · Zbl 1243.76031
[12] de Boor, C., (A Practical Guide to Splines. A Practical Guide to Splines, Applied Mathematical Sciences, vol. 27 (2001), Springer: Springer New York) · Zbl 0987.65015
[13] de Boor, C.; Fix, G. J., Spline approximation by quasiinterpolants, J. Approx. Theory, 8, 1, 19-45 (1973) · Zbl 0279.41008
[14] Marussig, B., (Seamless Integration of Design and Analysis through Boundary Integral Equations. Seamless Integration of Design and Analysis through Boundary Integral Equations, Monographic Series TU Graz: Structural Analysis (2016), Verlag der Technischen Universität Graz)
[15] Marussig, B.; Zechner, J.; Beer, G.; Fries, T.-P., Fast isogeometric boundary element method based on independent field approximation, Comput. Methods Appl. Mech. Engrg., 284, 458-488 (2015) · Zbl 1423.74101
[16] B. Marussig, J. Zechner, G. Beer, T.-P. Fries, Integration of design and analysis through boundary integral equations, in: VII European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, 2016. URL https://eccomas2016.org/proceedings/pdf/5812.pdf; B. Marussig, J. Zechner, G. Beer, T.-P. Fries, Integration of design and analysis through boundary integral equations, in: VII European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, 2016. URL https://eccomas2016.org/proceedings/pdf/5812.pdf
[17] da Veiga, L. B.; Buffa, A.; Sangalli, G.; Vázquez, R., Mathematical analysis of variational isogeometric methods, Acta Numer., 23, 157-287 (2014) · Zbl 1398.65287
[18] Li, K.; Qian, X., Isogeometric analysis and shape optimization via boundary integral, Comput. Aided Des., 43, 11, 1427-1437 (2011)
[19] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000), Courier Corporation · Zbl 1191.74002
[20] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 229-263 (2010) · Zbl 1227.74123
[21] Sederberg, T. W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and T-NURCCs, ACM Trans. Graph., 22, 3, 477-484 (2003)
[22] Dokken, T.; Lyche, T.; Pettersen, K. F., Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Design, 30, 3, 331-356 (2013) · Zbl 1264.41011
[23] Johannessen, K. A.; Kvamsdal, T.; Dokken, T., Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Engrg., 269, 471-514 (2014) · Zbl 1296.65021
[24] Bornemann, P. B.; Cirak, F., A subdivision-based implementation of the hierarchical b-spline finite element method, Comput. Methods Appl. Mech. Engrg., 253, 584-598 (2013) · Zbl 1297.65147
[25] Kraft, R., Adaptive And Linearly Independent Multilevel B-Splines (1997), SFB 404, Geschäftsstelle · Zbl 0937.65014
[26] Vuong, A. V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 49, 3554-3567 (2011) · Zbl 1239.65013
[27] Hiemstra, R. R.; Calabrò, F.; Schillinger, D.; Hughes, T. J.R., Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 316, 966-1004 (2017) · Zbl 1439.65170
[28] Lorenzo, G.; Scott, M. A.; Tew, K.; Hughes, T. J.R.; Gomez, H., Hierarchically refined and coarsened splines for moving interface problems, with particular application to phase-field models of prostate tumor growth, Comput. Methods Appl. Mech. Engrg., 319, 515-548 (2017) · Zbl 1439.74203
[29] Schillinger, D.; Dedè, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J.R., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249, 116-150 (2012) · Zbl 1348.65055
[30] deBorst, R.; Chen, L., The role of Bézier extraction in adaptive isogeometric analysis: Local refinement and hierarchical refinement, Internat. J. Numer. Methods Engrg. (2017)
[31] Hennig, P.; Müller, S.; Kästner, M., Bézier extraction and adaptive refinement of truncated hierarchical NURBS, Comput. Methods Appl. Mech. Engrg., 305, 316-339 (2016) · Zbl 1425.65031
[32] Scott, M. A.; Thomas, D. C.; Evans, E. J., Isogeometric spline forests, Comput. Methods Appl. Mech. Engrg., 269, 222-264 (2014) · Zbl 1296.65023
[33] Giannelli, C.; Jüttler, B.; Speleers, H., Strongly stable bases for adaptively refined multilevel spline spaces, Adv. Comput. Math., 40, 459-490 (2014) · Zbl 1298.41010
[34] Auricchio, F.; Beirão Da Veiga, L.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 11, 2075-2107 (2010) · Zbl 1226.65091
[35] Auricchio, F.; Beirão da Veiga, L.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249-252, 2-14 (2012) · Zbl 1348.74305
[36] Anitescu, C.; Jia, Y.; Zhang, Y. J.; Rabczuk, T., An isogeometric collocation method using superconvergent points, Comput. Methods Appl. Mech. Engrg., 284, 1073-1097 (2015) · Zbl 1425.65193
[37] Gomez, H.; De Lorenzis, L., The variational collocation method, Comput. Methods Appl. Mech. Engrg., 309, 152-181 (2016) · Zbl 1439.74489
[38] Montardini, M.; Sangalli, G.; Tamellini, L., Optimal-order isogeometric collocation at Galerkin superconvergent points, Comput. Methods Appl. Mech. Engrg., 316, 741-757 (2017) · Zbl 1439.65187
[39] Demko, S., On the existence of interpolating projections onto spline spaces, J. Approx. Theory, 43, 2, 151-156 (1985) · Zbl 0561.41029
[40] Speleers, H.; Dierckx, P.; Vandewalle, S., Powell-Sabin splines with boundary conditions for polygonal and non-polygonal domains, J. Comput. Appl. Math., 206, 55-72 (2007) · Zbl 1117.65026
[41] Kupradze, V. D.; Gegelia, T. G.; Basheleishvili, M. O.; Burchuladze, T. V., (Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Applied Mathematics and Mechanics, vol. 25 (1979), North-Holland Publishing Company) · Zbl 0406.73001
[42] Steinbach, O., Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements (2008), Springer: Springer New York, NY · Zbl 1153.65302
[43] Gaul, L.; Kögl, M.; Wagner, M., Boundary Element Methods for Engineers and Scientists: An Introductory Course with Advanced Topics (2003), Springer-Verlag: Springer-Verlag Berlin-Heidelberg-New York · Zbl 1071.65162
[44] Sauter, S. A.; Schwab, C., Boundary Element Methods, vol. 39 (2011), Springer: Springer Heidelberg Dordrecht London New York
[45] Mantic, V., A new formula for the C-matrix in the Somigliana identity, J. Elasticity, 33, 191-201 (1993) · Zbl 0801.73015
[46] Atkinson, K. E., The Numerical Solution of Integral Equations of the Second Kind (1997), Cambridge University Press · Zbl 0899.65077
[47] Scott, M. A.; Simpson, R. N.; Evans, J. A.; Lipton, S.; Bordas, S. P.A.; Hughes, T. J.R.; Sederberg, T. W., Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 197-221 (2013) · Zbl 1297.74156
[48] Buffa, A.; Giannelli, C., Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence, Math. Models Methods Appl. Sci., 26, 1, 1-25 (2016) · Zbl 1336.65181
[49] Speleers, H., Hierarchical spline spaces: Quasi-interpolants and local approximation estimates, Adv. Comput. Math., 43, 2, 235-255 (2017) · Zbl 1370.41021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.