×

zbMATH — the first resource for mathematics

On equivariant and motivic slices. (English) Zbl 1441.14077
Summary: Let \(k\) be a field with a real embedding. We compare the motivic slice filtration of a motivic spectrum over \(\operatorname{Spec}(k)\) with the \(C_2\)-equivariant slice filtration of its equivariant Betti realization, giving conditions under which realization induces an equivalence between the associated slice towers. In particular, we show that, up to reindexing, the towers agree for all spectra obtained from localized quotients of \( \boldsymbol{MGL} \) and \(M\mathbb{R} \), and for motivic Landweber exact spectra and their realizations. As a consequence, we deduce that equivariant spectra obtained from localized quotients of \(M\mathbb{R}\) are even in the sense of M. A. Hill and L. Meier [Algebr. Geom. Topol. 17, No. 4, 1953–2011 (2017; Zbl 1421.55002)], and give a computation of the slice spectral sequence converging to \(\pi_{*,*}\boldsymbol{BP}\langle n \rangle/2\) for \(1 \le n \le \infty \).
MSC:
14F42 Motivic cohomology; motivic homotopy theory
55P91 Equivariant homotopy theory in algebraic topology
18G80 Derived categories, triangulated categories
55N20 Generalized (extraordinary) homology and cohomology theories in algebraic topology
55P42 Stable homotopy theory, spectra
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] 10.1007/s00209-019-02302-z
[2] 10.4099/math1924.4.363
[3] 10.1112/topo.12032 · Zbl 1453.14065
[4] 10.2140/agt.2005.5.615 · Zbl 1086.55013
[5] 10.2140/gt.2010.14.967 · Zbl 1206.14041
[6] 10.2140/agt.2017.17.3547 · Zbl 1391.55009
[7] 10.1112/jtopol/jts015 · Zbl 1258.18012
[8] 10.1090/tran6647 · Zbl 1346.14049
[9] 10.1016/j.jpaa.2010.06.017 · Zbl 1222.55014
[10] 10.4310/HHA.2012.v14.n2.a9 · Zbl 1403.55003
[11] 10.4007/annals.2016.184.1.1 · Zbl 1366.55007
[12] 10.2140/agt.2017.17.1953 · Zbl 1421.55002
[13] 10.1515/crelle-2013-0038 · Zbl 1382.14006
[14] 10.1016/S0040-9383(99)00065-8 · Zbl 0967.55010
[15] 10.1017/is011004009jkt154 · Zbl 1266.14015
[16] ; Lam, Introduction to quadratic forms over fields. Introduction to quadratic forms over fields. Graduate Studies in Mathematics, 67 (2005) · Zbl 1068.11023
[17] 10.1215/ijm/1256051757
[18] 10.1112/jtopol/jtm004 · Zbl 1154.14005
[19] ; Levine, Doc. Math., Extra Vol. 7, 407 (2015)
[20] 10.1016/j.aim.2018.11.002 · Zbl 1417.55019
[21] 10.1515/9781400830558 · Zbl 1175.18001
[22] 10.1090/memo/0755 · Zbl 1025.55002
[23] 10.1016/j.aim.2016.09.027 · Zbl 1420.55024
[24] ; Mazel-Gee, New York J. Math., 22, 57 (2016)
[25] 10.1007/978-94-007-0948-5_7
[26] 10.1007/BF02698831 · Zbl 0983.14007
[27] ; Naumann, Doc. Math., 14, 551 (2009)
[28] 10.2140/gt.2013.17.1671 · Zbl 1276.55023
[29] 10.1017/is013001013jkt196 · Zbl 1319.14029
[30] 10.1016/j.aim.2014.10.011 · Zbl 1315.14030
[31] 10.2140/gt.2016.20.1157 · Zbl 1416.19001
[32] ; Röndigs, K-theory, 35 (2018)
[33] 10.4007/annals.2019.189.1.1 · Zbl 1406.14018
[34] 10.4310/HHA.2010.v12.n2.a11 · Zbl 1209.14019
[35] 10.1017/is010008019jkt128 · Zbl 1249.14008
[36] ; Spitzweck, A commutative ℙ1-spectrum representing motivic cohomology over Dedekind domains. A commutative ℙ1-spectrum representing motivic cohomology over Dedekind domains. Mém. Soc. Math. Fr., 157 (2018) · Zbl 1408.14081
[37] 10.2140/agt.2012.12.565 · Zbl 1282.14040
[38] 10.1007/BF01394024 · Zbl 0514.18008
[39] 10.2140/agt.2013.13.1743 · Zbl 1271.55015
[40] ; Voevodsky, Proceedings of the International Congress of Mathematicians, I, 579 (1998)
[41] ; Voevodsky, Motives, polylogarithms and Hodge theory, I. Motives, polylogarithms and Hodge theory, I. Int. Press Lect. Ser., 3, 3 (2002)
[42] 10.1007/s10240-003-0010-6 · Zbl 1057.14028
[43] 10.1112/S0024611504015084 · Zbl 1086.55005
[44] 10.2307/1970821 · Zbl 0244.55021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.