×

Geometric and metric characterizations of transversality properties. (English) Zbl 1441.49019

Summary: This paper continues the study of ‘good arrangements’ of collections of sets near a point in their intersection. We clarify quantitative relations between several geometric and metric characterizations of the transversality properties of collections of sets and the corresponding regularity properties of set-valued mappings. We expose all the parameters involved in the definitions and characterizations and establish relations between them. This allows us to classify the quantitative geometric and metric characterizations of transversality and regularity, and subdivide them into two groups with complete exact equivalences between the parameters within each group and clear relations between the values of the parameters in different groups.

MSC:

49J52 Nonsmooth analysis
49J53 Set-valued and variational analysis
49K40 Sensitivity, stability, well-posedness
90C30 Nonlinear programming
90C46 Optimality conditions and duality in mathematical programming
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Aragón Artacho, FJ; Mordukhovich, BS, Enhanced metric regularity and Lipschitzian properties of variational systems, J. Glob. Optim., 50, 145-167 (2011) · Zbl 1242.90255 · doi:10.1007/s10898-011-9698-x
[2] Attouch, H.; Bolte, J.; Redont, P.; Soubeyran, A., Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality, Math. Oper. Res., 35, 438-457 (2010) · Zbl 1214.65036 · doi:10.1287/moor.1100.0449
[3] Bakan, A.; Deutsch, F.; Li, W., Strong CHIP, normality, and linear regularity of convex sets, Trans. Amer. Math. Soc., 357, 3831-3863 (2005) · Zbl 1094.90030 · doi:10.1090/S0002-9947-05-03945-0
[4] Bauschke, HH; Borwein, JM, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38, 367-426 (1996) · Zbl 0865.47039 · doi:10.1137/S0036144593251710
[5] Bauschke, HH; Borwein, JM; Li, W., Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization, Math. Program. Ser. A, 86, 135-160 (1999) · Zbl 0998.90088 · doi:10.1007/s101070050083
[6] Bauschke, HH; Borwein, JM; Tseng, P., Bounded linear regularity, strong CHIP, and CHIP are distinct properties, J. Convex Anal., 7, 395-412 (2000) · Zbl 0964.90032
[7] Bui, HT; Kruger, AY, Extremality, stationarity and generalized separation of collections of sets, J. Optim. Theory Appl., 182, 211-264 (2019) · Zbl 1425.49007 · doi:10.1007/s10957-018-01458-8
[8] Cibulka, R.; Fabian, M.; Kruger, AY, On semiregularity of mappings, J. Math. Anal. Appl., 473, 811-836 (2019) · Zbl 1448.58006 · doi:10.1016/j.jmaa.2018.12.071
[9] Cuong, N.D., Kruger, A.Y.: Dual sufficient characterizations of transversality properties. Positivity (2020) · Zbl 1440.49018
[10] Cuong, N.D., Kruger, A.Y.: Nonlinear transversality of collections of sets: Primal space sufficient characterizations. arXiv:1902.06186 (2019)
[11] Cuong, N.D., Kruger, A.Y.: Primal space necessary characterizations of transversality properties. Optimization Online 2020-01-7579 (2020) · Zbl 1440.49018
[12] Cuong, ND; Kruger, AY, Nonlinear transversality of collections of sets: Dual space necessary characterizations, J. Convex Anal., 27, 287-308 (2020)
[13] Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2014) · Zbl 1337.26003
[14] Drusvyatskiy, D.; Ioffe, AD; Lewis, AS, Transversality and alternating projections for nonconvex sets, Found. Comput. Math., 15, 1637-1651 (2015) · Zbl 1338.49057 · doi:10.1007/s10208-015-9279-3
[15] Ioffe, AD, Metric regularity and subdifferential calculus, Russ. Math. Surv., 55, 501-558 (2000) · Zbl 0979.49017 · doi:10.1070/RM2000v055n03ABEH000292
[16] Ioffe, A.D.: Variational Analysis of Regular Mappings. Theory and Applications. Springer Monographs in Mathematics. Springer International Publishing (2017) · Zbl 1381.49001
[17] Klatte, D.; Kummer, B., Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Nonconvex Optimization and its Applications, vol. 60 (2002), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 1173.49300
[18] Kruger, AY, Stationarity and regularity of set systems, Pac. J. Optim., 1, 101-126 (2005) · Zbl 1105.90104
[19] Kruger, AY, About regularity of collections of sets, Set-Valued Anal., 14, 187-206 (2006) · Zbl 1141.49020 · doi:10.1007/s11228-006-0014-8
[20] Kruger, AY, About stationarity and regularity in variational analysis, Taiwan. J. Math., 13, 1737-1785 (2009) · Zbl 1223.90075 · doi:10.11650/twjm/1500405612
[21] Kruger, AY, About intrinsic transversality of pairs of sets, Set-Valued Var. Anal., 26, 111-142 (2018) · Zbl 1387.49023 · doi:10.1007/s11228-017-0446-3
[22] Kruger, AY; López, MA, Stationarity and regularity of infinite collections of sets, J. Optim. Theory Appl., 154, 339-369 (2012) · Zbl 1268.90126 · doi:10.1007/s10957-012-0043-4
[23] Kruger, AY; López, MA, Stationarity and regularity of infinite collections of sets. Applications to infinitely constrained optimization, J. Optim. Theory Appl., 155, 390-416 (2012) · Zbl 1273.90205 · doi:10.1007/s10957-012-0086-6
[24] Kruger, AY; Luke, DR; Thao, NH, About subtransversality of collections of sets, Set-Valued Var. Anal., 25, 701-729 (2017) · Zbl 1383.49028 · doi:10.1007/s11228-017-0436-5
[25] Kruger, AY; Luke, DR; Thao, NH, Set regularities and feasibility problems, Math. Program. Ser. B, 168, 279-311 (2018) · Zbl 1390.49012 · doi:10.1007/s10107-016-1039-x
[26] Kruger, AY; Thao, NH, About uniform regularity of collections of sets, Serdica Math. J., 39, 287-312 (2013) · Zbl 1324.49015
[27] Kruger, AY; Thao, NH, About [q]-regularity properties of collections of sets, J. Math. Anal. Appl., 416, 471-496 (2014) · Zbl 1315.49006 · doi:10.1016/j.jmaa.2014.02.028
[28] Kruger, AY; Thao, NH, Quantitative characterizations of regularity properties of collections of sets, J. Optim. Theory Appl., 164, 41-67 (2015) · Zbl 1309.49016 · doi:10.1007/s10957-014-0556-0
[29] Kruger, AY; Thao, NH, Regularity of collections of sets and convergence of inexact alternating projections, J. Convex Anal., 23, 823-847 (2016) · Zbl 1347.49028
[30] Lewis, AS; Luke, DR; Malick, J., Local linear convergence for alternating and averaged nonconvex projections, Found. Comput. Math., 9, 485-513 (2009) · Zbl 1169.49030 · doi:10.1007/s10208-008-9036-y
[31] Li, C.; Ng, KF; Pong, TK, The SECQ, linear regularity, and the strong CHIP for an infinite system of closed convex sets in normed linear spaces, SIAM J. Optim., 18, 643-665 (2007) · Zbl 1151.90054 · doi:10.1137/060652087
[32] Mordukhovich, BS, Variational Analysis and Generalized Differentiation. I: Basic Theory. Grundlehren der Mathematischen Wissenschaften, vol. 330 (2006), Berlin: Springer, Berlin
[33] Ng, KF; Yang, WH, Regularities and their relations to error bounds, Math. Program. Ser. A, 99, 521-538 (2004) · Zbl 1077.90050 · doi:10.1007/s10107-003-0464-9
[34] Ng, KF; Zang, R., Linear regularity and ϕ-regularity of nonconvex sets, J. Math. Anal. Appl., 328, 257-280 (2007) · Zbl 1330.49014 · doi:10.1016/j.jmaa.2006.05.028
[35] Ngai, HV; Théra, M., Metric inequality, subdifferential calculus and applications, Set-Valued Anal., 9, 187-216 (2001) · Zbl 1024.49017 · doi:10.1023/A:1011291608129
[36] Noll, D.; Rondepierre, A., On local convergence of the method of alternating projections, Found. Comput. Math., 16, 425-455 (2016) · Zbl 1339.65079 · doi:10.1007/s10208-015-9253-0
[37] Penot, JP, Calculus Without Derivatives. Graduate Texts in Mathematics, vol. 266 (2013), New York: Springer, New York · Zbl 1264.49014
[38] Rockafellar, RT; Wets, RJB, Variational Analysis (1998), Berlin: Springer, Berlin · Zbl 0888.49001
[39] Zheng, XY; Ng, KF, Linear regularity for a collection of subsmooth sets in Banach spaces, SIAM J. Optim., 19, 62-76 (2008) · Zbl 1190.90231 · doi:10.1137/060659132
[40] Zheng, XY; Wei, Z.; Yao, J-C, Uniform subsmoothness and linear regularity for a collection of infinitely many closed sets, Nonlinear Anal., 73, 413-430 (2010) · Zbl 1188.90255 · doi:10.1016/j.na.2010.03.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.