zbMATH — the first resource for mathematics

Integrating CAD and numerical analysis: ‘dirty geometry’ handling using the finite cell method. (English) Zbl 1441.65024
Summary: This paper proposes a computational methodology for the integration of Computer Aided Design (CAD) and the Finite Cell Method (FCM) for models with “dirty geometries”. FCM, being a fictitious domain approach based on higher order finite elements, embeds the physical model into a fictitious domain, which can be discretized without having to take into account the boundary of the physical domain. The true geometry is captured by a precise numerical integration of elements cut by the boundary. Thus, an effective Point Membership Classification algorithm that determines the inside-outside state of an integration point with respect to the physical domain is a core operation in FCM. To treat also “dirty geometries”, i.e. imprecise or flawed geometric models, a combination of a segment-triangle intersection algorithm and a flood fill algorithm being insensitive to most CAD model flaws is proposed to identify the affiliation of the integration points. The present method thus allows direct computations on geometrically and topologically flawed models. The potential and merit for practical applications of the proposed method is demonstrated by several numerical examples.

65D17 Computer-aided design (modeling of curves and surfaces)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX Cite
Full Text: DOI
[1] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[2] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 3941, 4135-4195 (2005) · Zbl 1151.74419
[3] Cirak, F.; Scott, M. J.; Antonsson, E. K.; Ortiz, M.; Schröder, P., Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision, Comput. Aided Des., 34, 2, 137-148 (2002)
[4] Kagan, P.; Fischer, A., Integrated mechanically based CAE system using B-Spline finite elements, Comput. Aided Des., 32, 8, 539-552 (2000) · Zbl 1206.65050
[5] Yang, J.; Han, S., Repairing CAD model errors based on the design history, Comput. Aided Des., 38, 6, 627-640 (2006)
[6] Mäntylä, M., (An Introduction to Solid Modeling. An Introduction to Solid Modeling, Principles of computer science series. (1988), Rockville: Computer Science Press), 13
[7] Massarwi, F.; Elber, G., A B-spline based framework for volumetric object modeling, Comput. Aided Des., 78, 36-47 (2016)
[8] Butlin, G.; Stops, C., Cad data repair, (Proceedings of the 5th International Meshing Roundtable (1996)), 7-12
[9] Gu, H.; Chase, T. R.; Cheney, D. C.; Bailey, T. T.; Johnson, D., Identifying, correcting, and avoiding errors in computer-aided design models which affect interoperability, J. Comput. Inf. Sci. Eng., 1, 2, 156-166 (2001)
[10] Petersson, N. A.; Chand, K. K., Detecting Translation Errors in CAD Surfaces and Preparing Geometries for Mesh Generation (2001), Lawrence Livermore National Lab., CA (US), Newport Beach: Lawrence Livermore National Lab., CA (US), Newport Beach CA
[11] Yang, J.; Han, S.; Park, S., A method for verification of computer-aided design model errors, J. Eng. Des., 16, 3, 337-352 (2005)
[12] Chong, C. S.; Senthil Kumar, A.; Lee, H. P., Automatic mesh-healing technique for model repair and finite element model generation, Finite Elem. Anal. Des., 43, 15, 1109-1119 (2007)
[13] Nooruddin, F. S.; Turk, G., Simplification and repair of polygonal models using volumetric techniques, IEEE Trans. Vis. Comput. Graphics, 9, 2, 191-205 (2003)
[14] Bischoff, S.; Kobbelt, L., Structure preserving CAD model repair, Comput. Graph. Forum, 24, 3, 527-536 (2005)
[15] Busaryev, O.; Dey, T. K.; Levine, J. A., Repairing and meshing imperfect shapes with delaunay refinement, (2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (2009), ACM: ACM New York, NY, USA)
[16] Wang, Z. J.; Srinivasan, K., An adaptive cartesian grid generation method for ‘Dirty’ geometry, Internat. J. Numer. Methods Fluids, 39, 8, 703-717 (2002) · Zbl 1101.76381
[17] Lee, Y. K.; Lim, C. K.; Ghazialam, H.; Vardhan, H.; Eklund, E., Surface mesh generation for dirty geometries by the cartesian shrink-wrapping technique, Eng. Comput., 26, 4, 377-390 (2010)
[18] Gasparini, R.; Kosta, T.; Tsukanov, I., Engineering analysis in imprecise geometric models, (Finite Elements in Analysis and Design, Vol. 66 (2013)), 96-109
[19] Kantorovich, L. V.; Krylov, V. I., Approximate Methods of Higher Analysis (1958), Interscience Publishers · Zbl 0083.35301
[21] Parvizian, J.; Düster, A.; Rank, E., Finite cell method, Comput. Mech., 41, 1, 121-133 (2007) · Zbl 1162.74506
[22] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Engrg., 197, 4548, 3768-3782 (2008) · Zbl 1194.74517
[23] Abedian, A.; Parvizian, J.; Düster, A.; Rank, E., Finite cell method compared to h-version finite element method for elasto-plastic problems, Appl. Math. Mech., 35, 10, 1239-1248 (2014)
[24] Wassermann, B.; Kollmannsberger, S.; Bog, T.; Rank, E., From geometric design to numerical analysis: A direct approach using the finite cell method on constructive solid geometry, Comput. Math. Appl. (2017) · Zbl 1410.65460
[25] Cai, S.; Zhang, W.; Zhu, J.; Gao, T., Stress constrained shape and topology optimization with fixed mesh: A B-spline finite cell method combined with level set function, Comput. Methods Appl. Mech. Engrg., 278, 361-387 (2014) · Zbl 1423.74741
[26] Groen, J. P.; Langelaar, M.; Sigmund, O.; Ruess, M., Higher-order multi-resolution topology optimization using the finite cell method, Internat. J. Numer. Methods Engrg. (2016)
[27] Joulaian, M.; Düster, A., Local enrichment of the finite cell method for problems with material interfaces, Comput. Mech., 52, 4, 741-762 (2013) · Zbl 1311.74123
[28] Joulaian, M.; Duczek, S.; Gabbert, U.; Düster, A., Finite and spectral cell method for wave propagation in heterogeneous materials, Comput. Mech., 54, 3, 661-675 (2014) · Zbl 1311.74056
[29] Duczek, S.; Joulaian, M.; Düster, A.; Gabbert, U., Numerical analysis of lamb waves using the finite and spectral cell methods, Internat. J. Numer. Methods Engrg., 99, 1, 26-53 (2014) · Zbl 1352.74144
[30] Elhaddad, M.; Zander, N.; Kollmannsberger, S.; Shadavakhsh, A.; Nübel, V.; Rank, E., Finite cell method: High-order structural dynamics for complex geometries, Int. J. Struct. Stab. Dyn., 15, 7, Article 1540018 pp. (2015) · Zbl 1359.74401
[31] Bog, T.; Zander, N.; Kollmannsberger, S.; Rank, E., Weak imposition of frictionless contact constraints on automatically recovered high-order, embedded interfaces using the finite cell method, Comput. Mech. (2017) · Zbl 1453.74066
[32] Mongeau, A., Large deformation two- and three- dimensional contact on embedded interfaces using the Finite Cell Method (2015), Technische Universität München, (Master’s thesis)
[33] Kollmannsberger, S.; Özcan, A.; Baiges, J.; Ruess, M.; Rank, E.; Reali, A., Parameterfree, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non-conforming patches, Internat. J. Numer. Methods Engrg., 101, 9, 670-699 (2015) · Zbl 1352.65520
[34] Zander, N.; Bog, T.; Kollmannsberger, S.; Schillinger, D.; Rank, E., Multi-level hp-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes, Comput. Mech., 55, 3, 499-517 (2015) · Zbl 1311.74133
[35] Kudela, L.; Zander, N.; Kollmannsberger, S.; Rank, E., Smart octrees: accurately integrating discontinuous functions, (3D, Computer Methods in Applied Mechanics and Engineering, Vol. 306 (2016)), 406-426
[36] Fries, T.-P.; Omerović, S., Higher-order accurate integration of implicit geometries, Internat. J. Numer. Methods Engrg., 106, 5, 323-371 (2015) · Zbl 1352.65498
[37] Joulaian, M.; Hubrich, S.; Düster, A., Numerical integration of discontinuities on arbitrary domains based on moment fitting, Comput. Mech., 57, 6, 979-999 (2016) · Zbl 1382.65066
[38] Hubrich, S.; Stolfo, P. D.; Kudela, L.; Kollmannsberger, S.; Rank, E.; Schröder, A.; Düster, A., Numerical integration of discontinuous functions: Moment fitting and smart octree, Comput. Mech., 1-19 (2017) · Zbl 1387.65025
[39] Giraldo, D.; Restrepo, D., The spectral cell method in nonlinear earthquake modeling, Comput. Mech., 1-21 (2017)
[40] Schillinger, D.; Ruess, M.; Zander, N.; Bazilevs, Y.; Düster, A.; Rank, E., Small and large deformation analysis with the p- and B-spline versions of the finite cell method, Comput. Mech., 50, 4, 445-478 (2012) · Zbl 1398.74401
[41] Rank, E.; Ruess, M.; Kollmannsberger, S.; Schillinger, D.; Düster, A.; modeling, Geometric., Geometric modeling isogeometric analysis and the finite cell method, Comput. Methods Appl. Mech. Engrg., 249-252, 104-115 (2012) · Zbl 1348.74340
[42] Ruess, M.; Schillinger, D.; Özcan, A. I.; Rank, E., Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Comput. Methods Appl. Mech. Engrg., 269, 46-71 (2014) · Zbl 1296.74013
[43] de Prenter, F.; Verhoosel, C. V.; van Zwieten, G. J.; van Brummelen, E. H., Condition number analysis and preconditioning of the finite cell method, Comput. Methods Appl. Mech. Engrg., 316, Supplement C, 297-327 (2017)
[44] Burman, E.; Hansbo, P.; Larson, M. G., A stabilized cut finite element method for partial differential equations on surfaces: The laplace operator, Comput. Methods Appl. Mech. Engrg., 285, 188-207 (2015) · Zbl 1425.65152
[45] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: I. A stabilized lagrange multiplier method, Comput. Methods Appl. Mech. Engrg., 199, 2680, 41-44-2686 (2010) · Zbl 1231.65207
[46] Patrikalakis, N. M.; Sakkalis, T.; Shen, G., Boundary representation models: Validity and rectification, (The Mathematics of Surfaces IX (2000), Springer: Springer London), 389-409, 978-1-4471-0495-7 · Zbl 0967.65027
[47] Hoffmann, C. M., (Geometric and Solid Modeling: An Introduction. Geometric and Solid Modeling: An Introduction, The Morgan Kaufmann series in computer graphics and geometric modeling (1989), Morgan Kaufmann: Morgan Kaufmann San Mateo, Calif)
[48] Sederberg, T. W.; Finnigan, G. T.; Li, X.; Lin, H.; Ipson, H., Watertight Trimmed NURBS in ACM SIGGRAPH 2008 Papers (2008), ACM: ACM New York, NY, USA
[49] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using t-splines, Comput. Methods Appl. Mech. Engrg., 199, 58, 229-263 (2010) · Zbl 1227.74123
[50] Rumpe, B., Modeling with UML: Language, Concepts, Methods (2016), Springer International Publishing
[51] Goldberg, A.; Robson, D., Modeling with UML: Language, Concepts, Methods (1983), Springer International Publishing
[52] Schillinger, D.; Düster, A.; Rank, E., The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics, Internat. J. Numer. Methods Engrg., 89, 9, 1171-1202 (2012) · Zbl 1242.74161
[53] Zander, N.; Kollmannsberger, S.; Ruess, M.; Yosibash, Z.; Rank, E., The finite cell method for linear thermoelasticity, Comput. Math. Appl., 64, 11, 3527-3541 (2012) · Zbl 1268.74020
[54] Elhaddad, M.; Zander, N.; Bog, T.; Kudela, L.; Kollmannsberger, S.; Kirschke, J. S.; Baum, T.; Ruess, M.; Rank, E., Multi-level hp-finite cell method for embedded interface problems with application in biomechanics, Int. J. Numer. Methods Biomed. Eng., 34, 4, Article e2951 pp. (2018)
[55] Kollmannsberger, S.; Özcan, A.; Carraturo, M.; Zander, N.; Rank, E., A hierarchical computational model for moving thermal loads and phase changes with applications to selective laser melting, Comput. Math. Appl., 75, 5, 1483-1497 (2018) · Zbl 1409.80001
[56] Düster, A.; Rank, E.; Szabó, B. A., The p-version of the finite element method and finite cell methods, (Stein, E.; Borst, R.; Hughes, T. J.R., Encyclopedia of Computational Mechanics, Vol. 2 (2017), Chichester, West Sussex: John Wiley & Sons), 1-35
[57] Dauge, M.; Düster, A.; Rank, E., Theoretical and numerical investigation of the finite cell method, J. Sci. Comput., 65, 3, 1039-1064 (2015) · Zbl 1331.65160
[58] Schillinger, D.; Rank, E., An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry, Comput. Methods Appl. Mech. Engrg., 200, 3358, 47-48-3380 (2011) · Zbl 1230.74197
[59] Zander, N.; Bog, T.; Elhaddad, M.; Frischmann, F.; Kollmannsberger, S.; Rank, E., The multi-level hp-method for three-dimensional problems: Dynamically changing high-order mesh refinement with arbitrary hanging nodes, Comput. Methods Appl. Mech. Engrg., 310, 252-277 (2016)
[60] Varduhn, V.; Hsu, M.-C.; Ruess, M.; Schillinger, D., The tetrahedral finite cell method: higher-order immersogeometric analysis on adaptive non-boundary-fitted meshes, Internat. J. Numer. Methods Engrg., 107, 12, 1054-1079 (2016) · Zbl 1352.65558
[61] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J. A.; Aggarwal, A.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J.R., An immersogeometric variational framework for fluidstructure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Engrg., 284, 1005-1053 (2015) · Zbl 1423.74273
[62] Duczek, S.; Gabbert, U., The finite cell method for polygonal meshes: Poly-FCM, Comput. Mech., 1-32 (2016) · Zbl 1398.65296
[63] Abedian, A.; Parvizian, J.; Düster, A.; Khademyzadeh, H.; Rank, E., Performance of different integration schemes in facing discontinuities in the finite cell method, Int. J. Comput. Methods, 10, 03, Article 1350002 pp. (2013) · Zbl 1359.65245
[64] Ruess, M.; Bazilevs, Y.; Schillinger, D.; Zander, N.; Rank, E., Weakly enforced boundary conditions for the NURBS-based finite cell method, (European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) (2012))
[65] Ruess, M.; Schillinger, D.; Bazilevs, Y.; Varduhn, V.; Rank, E., Weakly enforced essential boundary conditions for nurbs-embedded and trimmed nurbs geometries on the basis of the finite cell method, Internat. J. Numer. Methods Engrg., 95, 10, 811-846 (2013) · Zbl 1352.65643
[66] Guo, Y.; Ruess, M., Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures, Comput. Methods Appl. Mech. Engrg., 284, 881-905 (2015) · Zbl 1423.74573
[67] Preparata, F. P.; Shamos, M. I., Computational Geometry: An Introduction (1985), Springer-Verlag New York, Inc: Springer-Verlag New York, Inc New York, NY, USA · Zbl 0759.68037
[68] Žalik, B.; Kolingerova, I., A cell-based point-in-polygon algorithm suitable for large sets of points, Comput. Geosci., 27, 10, 1135-1145 (2001)
[69] Sitek, A.; Huesman, R. H.; Gullberg, G. T., Tomographic reconstruction using an adaptive tetrahedral mesh defined by a point cloud, IEEE Trans. Med. Imaging, 25, 9, 1172-1179 (2006)
[70] Taylor, G., Point in polygon test, Surv. Rev., 32, 254, 479-484 (1994)
[71] Salomon, K. B., An efficient point-in-polygon algorithm, Comput. Geosci., 4, 2, 173-178 (1978)
[72] Foley, J. D.; Dam, A. V.; Feiner, S. K.; Hughes, J. F.; Phillips, R. L., Introduction to Computer Graphics (1997), Addison-Wesley
[73] Strang, G., An Analysis of the Finite Element Method (1973), Englewood Cliffs, NJ: Prentice-Hall · Zbl 0278.65116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.