×

The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis. (English) Zbl 1441.74082

Summary: The use of modified couple stress theory to simulate the size-dependent phenomenon of composite laminate microplate is commonly limited to simple boundary conditions and mechanical bending load. The small-scale effects on bending and buckling on composite laminate microplate under complex boundary conditions in thermal environment have not been understood fully in the literature. Hence, this research develops, for the first time, a model to overcome the above limitation through the combination of a new modified couple stress theory and isogeometric analysis (IGA). By solving the governing equation using IGA, the thermal displacement, stress and thermal buckling load for various material length scale parameters are obtained. To satisfy the continuous shear stress condition at the layer interfaces, the equilibrium equations as integrated in-plane stress derivatives over the thickness are imposed. In addition, the non-uniform rational B-splines (NURBS) satisfy the higher-order derivative of shape function using the equilibrium equation. Furthermore, to show the effectiveness of presented model for capturing the size effect on thermal bending and thermal buckling of multi-ply laminate microplate, the influences of fiber orientation, thickness ratio, boundary condition and the variation in material length scale parameter are investigated.

MSC:

74G60 Bifurcation and buckling
74F05 Thermal effects in solid mechanics
74K20 Plates
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lam, D. C.C.; Yang, F.; Chong, A. C.M.; Wang, F.; Tong, P., Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51, 8, 1477-1508 (2003) · Zbl 1077.74517
[2] Chong, A. C.M.; Lam, D. C.C., Strain gradient plasticity effect in indentation hardness of polymers, J. Mater. Res., 14, 10, 4103-4110 (2011)
[3] Eringen, A., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys, 54, 4703-4710 (1983)
[4] Eringen, A. C., Linear theory of nonlocal elasticity and dispersion of plane waves, Internat. J. Engrg. Sci., 10, 5, 425-435 (1972) · Zbl 0241.73005
[5] Eringen, A. C., Nonlocal polar elastic continua, Internat. J. Engrg. Sci., 10, 1, 1-16 (1972) · Zbl 0229.73006
[6] Eringen, A. C.; Edelen, D. G.B., On nonlocal elasticity, Internat. J. Engrg. Sci., 10, 3, 233-248 (1972) · Zbl 0247.73005
[7] Toupin, R. A., Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., 11, 1, 385-414 (1962) · Zbl 0112.16805
[8] Mindlin, R. D.; Tiersten, H. F., Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., 11, 1, 415-448 (1962) · Zbl 0112.38906
[9] Koiter, W. T., Couple stresses in the theory of elasticity, I and II, Nederl. Akad. Wetensch. Proc. Ser, B, 67, 17-44 (1964) · Zbl 0124.17405
[10] Yang, F.; Chong, A. C.M.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 10, 2731-2743 (2002) · Zbl 1037.74006
[11] Mindlin, R. D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal, 16, 51-78 (1964) · Zbl 0119.40302
[12] Mindlin, R. D.; Eshel, N. N., On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., 4, 1, 109-124 (1968) · Zbl 0166.20601
[13] Ebrahimi, F.; Salari, E., Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory, J. Mech. Sci. Technol., 29, 9, 3797-3803 (2015)
[14] Ebrahimi, F.; Barati, M. R., A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment, Appl. Phys. A, 122, 9, 792 (2016)
[15] Mashat, D. S.; Zenkour, A. M.; Sobhy, M., Investigation of vibration and thermal buckling of nanobeams embedded in an elastic medium under various boundary conditions, J. Mech., 32, 3, 277-287 (2015)
[16] Li, R.; Kardomateas, G. A., Thermal buckling of multi-walled carbon nanotubes by nonlocal elasticity, J. Appl. Mech., 74, 3, 399-405 (2006) · Zbl 1111.74510
[17] Li, R.; Kardomateas, G. A., Vibration characteristics of multiwalled carbon nanotubes embedded in elastic media by a nonlocal elastic shell model, J. Appl. Mech., 74, 6, 1087-1094 (2007)
[18] Mohammadi, M.; Farajpour, A.; Goodarzi, M.; Heydarshenas, R., Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, J. Solid Mech., 5, 2, 116-132 (2013)
[19] Mohammadi, M.; Moradi, A.; Farajpour, A., Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Lat. Amer. J. Solids Struct., 11, 437-458 (2014)
[20] Ashoori, A. R.; Salari, E.; Sadough Vanini, S. A., Size-dependent thermal stability analysis of embedded functionally graded annular nanoplates based on the nonlocal elasticity theory, Int. J. Mech. Sci., 119, 396-411 (2016)
[21] Sobhy, M., Levy-type solution for bending of single-layered graphene sheets in thermal environment using the two-variable plate theory, Int. J. Mech. Sci., 90, 171-178 (2015)
[22] Mohammadi, H.; Mahzoon, M., Thermal effects on postbuckling of nonlinear microbeams based on the modified strain gradient theory, Compos. Struct., 106, 764-776 (2013)
[23] Ansari, R.; Gholami, R.; Shojaei, M. F.; Mohammadi, V.; Sahmani, S., Buckling of FGM timoshenko microbeams under in-plane thermal loading based on the modified strain gradient theory, Int. J. Multiscale Comput. Eng., 11, 4, 389-405 (2013)
[24] Ansari, R.; Faghih Shojaei, M.; Gholami, R.; Mohammadi, V.; Darabi, M. A., Thermal postbuckling behavior of size-dependent functionally graded Timoshenko microbeams, Int. J. Non-Linear Mech., 50, 127-135 (2013)
[25] Sahmani, S.; Ansari, R., Size-dependent buckling analysis of functionally graded third-order shear deformable microbeams including thermal environment effect, Appl. Math. Model., 37, 23, 9499-9515 (2013) · Zbl 1427.74098
[26] Ansari, R.; Gholami, R.; Faghih Shojaei, M.; Mohammadi, V.; Darabi, M. A., Thermal buckling analysis of a mindlin rectangular FGM microplate based on the strain gradient theory, J. Therm. Stresses, 36, 5, 446-465 (2013)
[27] Ansari, R.; Shojaei, M. F.; Mohammadi, V.; Gholami, R.; Rouhi, H., Size-dependent thermal buckling and postbuckling of functionally graded annular microplates based on the modified strain gradient theory, J. Therm. Stresses, 37, 2, 174-201 (2014)
[28] Shenas, A. G.; Malekzadeh, P., Free vibration of functionally graded quadrilateral microplates in thermal environment, Thin-Walled Struct., 106, 294-315 (2016)
[29] Farzam, A.; Hassani, B., Size-dependent analysis of FG microplates with temperature-dependent material properties using modified strain gradient theory and isogeometric approach, Composites B, 161, 150-168 (2019)
[30] Wang, Y.-G.; Lin, W.-H.; Liu, N., Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory, Appl. Math. Model., 39, 1, 117-127 (2015) · Zbl 1428.74130
[31] Taati, E.; Molaei Najafabadi, M.; Basirat Tabrizi, H., Size-dependent generalized thermoelasticity model for Timoshenko microbeams, Acta Mech., 225, 7, 1823-1842 (2014) · Zbl 1401.74177
[32] Nateghi, A.; Salamat-talab, M., Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory, Compos. Struct., 96, 97-110 (2013)
[33] Mohammadabadi, M.; Daneshmehr, A. R.; Homayounfard, M., Size-dependent thermal buckling analysis of micro composite laminated beams using modified couple stress theory, Internat. J. Engrg. Sci., 92, 47-62 (2015) · Zbl 1423.74348
[34] Akgöz, B.; Civalek, Ö., Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium, Internat. J. Engrg. Sci., 85, 90-104 (2014) · Zbl 06982870
[35] Ashoori, A. R.; Sadough Vanini, S. A., Thermal buckling of annular microstructure-dependent functionally graded material plates resting on an elastic medium, Composites B, 87, 245-255 (2016) · Zbl 1406.74429
[36] Zhou, S. S.; Gao, X. L., A nonclassical model for circular mindlin plates based on a modified couple stress theory, J. Appl. Mech., 81, 5 (2014), 051014-051014-8
[37] Eshraghi, I.; Dag, S.; Soltani, N., Bending and free vibrations of functionally graded annular and circular micro-plates under thermal loading, Compos. Struct., 137, 196-207 (2016)
[38] Farzam, A.; Hassani, B., Thermal and mechanical buckling analysis of fg carbon nanotube reinforced composite plates using modified couple stress theory and isogeometric approach, Compos. Struct., 206, 774-790 (2018)
[39] Chen, W.; Li, X., A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model, Arch. Appl. Mech., 84, 3, 323-341 (2014) · Zbl 1368.74034
[40] Wanji, C.; Shengqi, Y.; Xiaopeng, L., A study of scale effect of composite laminated plates based on new modified couple stress theory by finite-element method, J. Multisc. Comput. Eng., 12, 6, 507-527 (2014)
[41] Yang, S.; Chen, W., On hypotheses of composite laminated plates based on new modified couple stress theory, Compos. Struct., 133, Supplement C, 46-53 (2015)
[42] Chen, W.; Wang, Y., A model of composite laminated reddy plate of the global-local theory based on new modified couple-stress theory, Mech. Adv. Mater. Struct., 23, 6, 636-651 (2016)
[43] Yang, W.; He, D., Bending, free vibration and buckling analyses of anisotropic layered micro-plates based on a new size-dependent model, Compos. Struct., 189, 137-147 (2018)
[44] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[45] Hughes, T. J.R.; Reali, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 5, 301-313 (2010) · Zbl 1227.65029
[46] Farzam-Rad, S. A.; Hassani, B.; Karamodin, A., Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface, Composites B, 108, 174-189 (2017)
[47] Hassani, B., A new efficient shear deformation theory for FG plates with in-plane and through-thickness stiffness variations using isogeometric approach AU - Farzam, Amir, Mech. Adv. Mater. Struct. (2018), 14-14
[48] Liu, N.; Jeffers, A. E., Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory, Compos. Struct., 176, 143-153 (2017)
[49] Phung-Van, P.; Nguyen-Xuan, C.-L.; Thanh, H.; Abdel-Wahab, M., Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments, Compos. Struct., 201, 882-892 (2018)
[50] Thanh, C.-L.; Phung-Van, P.; Thai, C. H.; Nguyen-Xuan, H.; Abdel Wahab, M., Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory, Compos. Struct., 184, Supplement C, 633-649 (2018)
[51] Phung-Van, P.; Ferreira, A. J.M.; Nguyen-Xuan, H.; Abdel Wahab, M., An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates, Composites B, 118, Supplement C, 125-134 (2017)
[52] Nguyen, H. X.; Nguyen, T. N.; Abdel-Wahab, M.; Bordas, S. P.A.; Nguyen-Xuan, H.; Vo, T. P., A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory, Comput. Methods Appl. Mech. Engrg., 313, 904-940 (2017) · Zbl 1439.74453
[53] Reddy, J. N., A simple higher-order theory for laminated composite plates, J. Appl. Mech., 51, 4, 745-752 (1984) · Zbl 0549.73062
[54] Reddy, J. N., Mechanics of Laminated Composite Plates and Shells Theory and Analysis (2004), CRC Press: CRC Press New York · Zbl 1075.74001
[55] Ghadiri, M.; Zajkani, A.; Akbarizadeh, M. R., Thermal effect on dynamics of thin and thick composite laminated microbeams by modified couple stress theory for different boundary conditions, Appl. Phys. A, 122, 12, 1023 (2016)
[56] Reddy, J. N.; Barbero, E. J.; Teply, J. L., A plate bending element based on a generalized laminated plate theory, Int. J. Numer. Methods Eng., 28, 2275-2292 (1989) · Zbl 0717.73066
[57] Cetkovic, M., Thermo-mechanical bending of laminated composite and sandwich plates using layerwise displacement model, Compos. Struct., 125, 388-399 (2015)
[58] Pagano, N. J., Exact solutions for rectangular bidirectional composites and sandwich plates, J. Compos. Mater., 4, 1, 20-34 (1970)
[59] Kant, T.; Shiyekar, S. M., An assessment of a higher order theory for composite laminates subjected to thermal gradient, Compos. Struct., 96, 698-707 (2013)
[60] (Reddy, J., Mechanics of Laminated Composite Plates (1999), CRC Press)
[61] Ali, J. S.M.; Bhaskar, K.; Varadan, T. K., A new theory for accurate thermal/mechanical flexural analysis of symmetric laminated plates, Compos. Struct., 45, 3, 227-232 (1999)
[62] Bhaskar, K.; Varadan, T. K.; Ali, J. S.M., Thermoelastic solutions for orthotropic and anisotropic composite laminates, Composites B, 27, 5, 415-420 (1996)
[63] Tran, L. V.; Wahab, M. A.; Kim, S.-E., An isogeometric finite element approach for thermal bending and buckling analyses of laminated composite plates, Compos. Struct., 179, 35-49 (2017)
[64] Noor, A. K.; Burton, W. S., Three-dimensional solutions for thermal buckling of multilayered anisotropic plates, J Eng Mech, 118, 683-701 (1992)
[65] Babu, C. S.; Kant, T., Refined higher order finite element models for thermal buckling of laminated composite and sandwich plates, J. Therm. Stresses, 23, 2, 111-130 (2000)
[66] Singh, S.; Singh, J.; Shukla, K. K., Buckling of laminated composite plates subjected to mechanical and thermal loads using meshless collocations, J. Mech. Sci. Technol., 27, 2, 327-336 (2013)
[67] Kant, T.; Babu, C. S., Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models, Compos. Struct., 49, 1, 77-85 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.