×

Adaptive analysis of crack propagation in thin-shell structures via an isogeometric-meshfree moving least-squares approach. (English) Zbl 1441.74210

Summary: This paper reports an isogeometric-meshfree moving least-squares approach for the adaptive analysis of crack propagation in thin-shell structures within the context of linear elastic fracture mechanics. The present approach is developed based on the equivalence of the moving least-squares meshfree shape functions and the isogeometric basis functions, which provides an effective strategy of adaptive mesh refinement for isogeometric analysis (IGA) in a straightforward meshfree manner. The adaptivity of the mesh refinement is achieved by utilizing a gradient-based error estimator to identify the meshes that need to be refined by adding linear reproducing points. The Kirchhoff-Love theory is further applied in the isogeometric-meshfree moving least-squares formulation to simplify the modeling of cracked thin-shell structures by neglecting the rotational degrees of freedom. In this way, the singularity of stress fields near the crack tip and the discontinuity of displacement fields around the crack surface can be efficiently captured by the adaptive mesh refinement to generate accurate results. A series of two-dimensional static and quasi-static crack propagation problems of thin-shell structures are investigated. It is found that the adaptive refinement strategy makes the present approach achieve higher convergence rate and computational efficiency than IGA and the meshfree method. The predicted propagation paths obtained by the present approach are in good agreement with the previously reported results.

MSC:

74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Potyondy, D. O.; Wawrzynek, P. A.; Ingraffea, A. R., Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures, Internat. J. Numer. Methods Engrg., 38, 10, 1611-1633 (1995) · Zbl 0825.73551
[2] Chen, C.; Wawrzynek, P.; Ingraffea, A., A methodology for fatigue crack growth and residual strength prediction with applications to aircraft fuselages, Comput. Mech., 19, 6, 527-532 (1997)
[3] Nguyen-Thanh, N.; Zhou, K.; Zhuang, X.; Areias, P.; Nguyen-Xuan, H.; Bazilevs, Y.; Rabczuk, T., Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling, Comput. Methods Appl. Mech. Engrg., 316, 1157-1178 (2017) · Zbl 1439.74455
[4] Rabczuk, T.; Areias, P. M.A.; Belytschko, T., A meshfree thin shell method for non-linear dynamic fracture, Internat. J. Numer. Methods Engrg., 72, 5, 524-548 (2007) · Zbl 1194.74537
[5] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Internat. J. Numer. Methods Engrg., 45, 5, 601-620 (1999) · Zbl 0943.74061
[6] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 1, 131-150 (1999) · Zbl 0955.74066
[7] Melenk, J. M.; Babuška, I., The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 1-4, 289-314 (1996) · Zbl 0881.65099
[8] Dolbow, J.; Moes, N.; Belytschko, T., Modeling fracture in Mindlin-Reissner plates with the extended finite element method, Int. J. Solids Struct., 37, 48-50, 7161-7183 (2000) · Zbl 0993.74061
[9] Dolbow, J.; Moes, N.; Belytschko, T., An extended finite element method for modeling crack growth with frictional contact, Comput. Methods Appl. Mech. Engrg., 190, 51-52, 6825-6846 (2001) · Zbl 1033.74042
[10] Zeng, Q.; Liu, Z.; Xu, D.; Wang, H.; Zhuang, Z., Modeling arbitrary crack propagation in coupled shell/solid structures with X-FEM, Internat. J. Numer. Methods Engrg., 106, 12, 1018-1040 (2016) · Zbl 1352.74309
[11] Areias, P. M.A.; Belytschko, T., Non-linear analysis of shells with arbitrary evolving cracks using XFEM, Internat. J. Numer. Methods Engrg., 62, 3, 384-415 (2005) · Zbl 1080.74043
[12] Larsson, R.; Mediavilla, J.; Fagerström, M., Dynamic fracture modeling in shell structures based on XFEM, Internat. J. Numer. Methods Engrg., 86, 4-5, 499-527 (2011) · Zbl 1216.74025
[13] Areias, P. M.A.; Song, J. H.; Belytschko, T., Analysis of fracture in thin shells by overlapping paired elements, Comput. Methods Appl. Mech. Engrg., 195, 41-43, 5343-5360 (2006) · Zbl 1120.74048
[14] Areias, P. M.A.; Rabczuk, T., Quasi-static crack propagation in plane and plate structures using set-valued traction-separation laws, Internat. J. Numer. Methods Engrg., 74, 3, 475-505 (2008) · Zbl 1159.74407
[15] Basar, Y.; Ding, Y., Finite-element analysis of hyperelastic thin shells with large strains, Comput. Mech., 18, 3, 200-214 (1996) · Zbl 0880.73060
[16] Li, S.; Liu, W. K., Meshfree and particle methods and their applications, Appl. Mech. Rev., 55, 1, 1-34 (2002)
[17] Liu, G.-R., Meshfree Methods: Moving beyond the Finite Element Method (2009), Taylor & Francis
[18] Zhuang, X.; Augarde, C.; Bordas, S., Accurate fracture modelling using meshless methods, the visibility criterion and level sets: formulation and 2D modelling, Internat. J. Numer. Methods Engrg., 86, 2, 249-268 (2011) · Zbl 1235.74346
[19] Zhuang, X.; Augarde, C. E.; Mathisen, K. M., Fracture modeling using meshless methods and level sets in 3D: Framework and modeling, Internat. J. Numer. Methods Engrg., 92, 11, 969-998 (2012) · Zbl 1352.74312
[20] Qian, D.; Eason, T.; Li, S.; Liu, W. K., Meshfree simulation of failure modes in thin cylinders subjected to combined loads of internal pressure and localized heat, Internat. J. Numer. Methods Engrg., 76, 8, 1159-1184 (2008) · Zbl 1195.74297
[21] Rabczuk, T.; Areias, P., A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis, CMES - Comput. Model. Eng. Sci., 16, 2, 115-130 (2006)
[22] Belytschko, T.; Tabbara, M., Dynamic fracture using element-free Galerkin methods, Internat. J. Numer. Methods Engrg., 39, 6, 923-938 (1996) · Zbl 0953.74077
[23] Belytschko, T.; Gu, L.; Lu, Y. Y., Fracture and crack growth by element free Galerkin methods, Modelling Simulation Mater. Sci. Eng., 2, 3a, 519-534 (1994)
[24] Li, S.; Mataga, P. A., Dynamic crack propagation in piezoelectric materials—Part I. Electrode solution, J. Mech. Phys. Solids, 44, 11, 1799-1830 (1996) · Zbl 1054.74715
[25] Krysl, P.; Belytschko, T., The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks, Internat. J. Numer. Methods Engrg., 44, 6, 767-800 (1999) · Zbl 0953.74078
[26] Rabczuk, T.; Belytschko, T., A three-dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. Methods Appl. Mech. Engrg., 196, 29-30, 2777-2799 (2007) · Zbl 1128.74051
[27] Rabczuk, T.; Bordas, S.; Zi, G., A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics, Comput. Mech., 40, 3, 473-495 (2007) · Zbl 1161.74054
[28] Bordas, S.; Rabczuk, T.; Zi, G., Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment, Eng. Fract. Mech., 75, 5, 943-960 (2008)
[29] Ren, B.; Li, S., Modeling and simulation of large-scale ductile fracture in plates and shells, Int. J. Solids Struct., 49, 18, 2373-2393 (2012)
[30] Lee, G. H.; Chung, H. J.; Choi, C. K., Adaptive crack propagation analysis with the element-free Galerkin method, Internat. J. Numer. Methods Engrg., 56, 3, 331-350 (2003) · Zbl 1022.74037
[31] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD finite elements NURBS exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[32] De Luycker, E.; Benson, D. J.; Belytschko, T.; Bazilevs, Y.; Hsu, M. C., X-FEM in isogeometric analysis for linear fracture mechanics, Internat. J. Numer. Methods Engrg., 87, 6, 541-565 (2011) · Zbl 1242.74105
[33] Ghorashi, S. S.; Valizadeh, N.; Mohammadi, S., Extended isogeometric analysis for simulation of stationary and propagating cracks, Internat. J. Numer. Methods Engrg., 89, 9, 1069-1101 (2012) · Zbl 1242.74119
[34] Dörfel, M. R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 264-275 (2010) · Zbl 1227.74125
[35] Evans, E. J.; Scott, M. A.; Li, X.; Thomas, D. C., Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 284, 1-20 (2015) · Zbl 1425.65025
[36] Hennig, P.; Müller, S.; Kästner, M., Bézier extraction and adaptive refinement of truncated hierarchical NURBS, Comput. Methods Appl. Mech. Engrg., 305, 316-339 (2016) · Zbl 1425.65031
[37] Nguyen-Thanh, N.; Nguyen-Xuan, H.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids, Comput. Methods Appl. Mech. Engrg., 200, 21-22, 1892-1908 (2011) · Zbl 1228.74091
[38] Johannessen, K. A.; Kvamsdal, T.; Dokken, T., Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Engrg., 269, 471-514 (2014) · Zbl 1296.65021
[39] Chen, L.; de Borst, R., Adaptive refinement of hierarchical T-splines, Comput. Methods Appl. Mech. Engrg., 337, 220-245 (2018) · Zbl 1440.65193
[40] Nguyen-Thanh, N.; Zhou, K., Extended isogeometric analysis based on PHT-splines for crack propagation near inclusions, Internat. J. Numer. Methods Engrg., 112, 12, 1777-1800 (2017)
[41] Chen, L.; Lingen, E. J.; de Borst, R., Adaptive hierarchical refinement of NURBS in cohesive fracture analysis, Internat. J. Numer. Methods Engrg., 112, 13, 2151-2173 (2017)
[42] Rao, B.; Rahman, S., A coupled meshless-finite element method for fracture analysis of cracks, Int. J. Press. Vessels Pip., 78, 9, 647-657 (2001)
[43] Rabczuk, T.; Xiao, S. P.; Sauer, M., Coupling of mesh-free methods with finite elements: basic concepts and test results, Int. J. Numer. Methods Biomed. Eng., 22, 10, 1031-1065 (2006) · Zbl 1109.65082
[44] Belytschko, T.; Organ, D.; Krongauz, Y., A coupled finite element-element-free Galerkin method, Comput. Mech., 17, 3, 186-195 (1995) · Zbl 0840.73058
[45] Simkins, D. C.; Kumar, A.; Collier, N.; Whitenack, L. B., Geometry representation modification and iterative design using RKEM, Comput. Methods Appl. Mech. Engrg., 196, 41-44, 4304-4320 (2007) · Zbl 1173.74481
[46] Wang, D. D.; Zhang, H. J., A consistently coupled isogeometric-meshfree method, Comput. Methods Appl. Mech. Engrg., 268, 843-870 (2014) · Zbl 1295.65015
[47] Rosolen, A.; Arroyo, M., Blending isogeometric analysis and local maximum entropy meshfree approximants, Comput. Methods Appl. Mech. Engrg., 264, 95-107 (2013) · Zbl 1286.65025
[48] Valizadeh, N.; Bazilevs, Y.; Chen, J. S.; Rabczuk, T., A coupled IGA-meshfree discretization of arbitrary order of accuracy and without global geometry parameterization, Comput. Methods Appl. Mech. Engrg., 293, 20-37 (2015) · Zbl 1425.65181
[49] Li, W.; Nguyen-Thanh, N.; Zhou, K., Geometrically nonlinear analysis of thin-shell structures based on an isogeometric-meshfree coupling approach, Comput. Methods Appl. Mech. Engrg., 336, 111-134 (2018) · Zbl 1440.74420
[50] Tan, P.; Nguyen-Thanh, N.; Rabczuk, T.; Zhou, K., Static, dynamic and buckling analyses of 3D FGM plates and shells via an isogeometric-meshfree coupling approach, Compos. Struct., 198, 35-50 (2018)
[51] Zhang, H. J.; Wang, D. D.; Liu, W., Isogeometric-meshfree coupled analysis of Kirchhoff plates, Adv. Struct. Eng., 17, 8, 1159-1176 (2014)
[52] Nguyen-Thanh, N.; Huang, J.; Zhou, K., An isogeometric-meshfree coupling approach for analysis of cracks, Internat. J. Numer. Methods Engrg., 113, 10, 1630-1651 (2018)
[53] Nguyen-Thanh, N.; Li, W.; Zhou, K., Static and free-vibration analyses of cracks in thin-shell structures based on an isogeometric-meshfree coupling approach, Comput. Mech., 62, 1287-1309 (2018) · Zbl 1462.74167
[54] Zhang, H.; Wu, J.; Wang, D., Free vibration analysis of cracked thin plates by quasi-convex coupled isogeometric-meshfree method, Front. Struct. Civ. Eng., 9, 4, 405-419 (2015)
[55] González, D.; Cueto, E.; Doblaré, M., Higher-order natural element methods: Towards an isogeometric meshless method, Internat. J. Numer. Methods Engrg., 74, 13, 1928-1954 (2008) · Zbl 1195.74281
[56] Zhang, H.; Wang, D., Reproducing kernel formulation of B-spline and NURBS basis functions: A meshfree local refinement strategy for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 320, 474-508 (2017) · Zbl 1439.65202
[57] Nguyen-Thanh, N.; Li, W.; Huang, J.; Srikanth, N.; Zhou, K., An adaptive isogeometric analysis meshfree collocation method for elasticity and frictional contact problems, Internat. J. Numer. Methods Engrg., 120, 2, 209-230 (2019)
[58] Levin, D., The approximation power of moving least-squares, Math. Comput. Amer.Math. Soc., 67, 224, 1517-1531 (1998) · Zbl 0911.41016
[59] Li, S.; Liu, W. K., Moving least-square reproducing kernel method Part II: Fourier analysis, Comput. Methods Appl. Mech. Engrg., 139, 1-4, 159-193 (1996) · Zbl 0883.65089
[60] Cirak, F.; Ortiz, M.; Schroder, P., Subdivision surfaces: a new paradigm for thin-shell finite-element analysis, Internat. J. Numer. Methods Engrg., 47, 12, 2039-2072 (2000) · Zbl 0983.74063
[61] Kiendl, J.; Bletzinger, K. U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 49-52, 3902-3914 (2009) · Zbl 1231.74422
[62] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended/generalized finite element methods for material modeling, Modelling Simulation Mater. Sci. Eng., 17, 4, Article 043001 pp. (2009)
[63] Nguyen-Thanh, N.; Valizadeh, N.; Nguyen, M. N.; Nguyen-Xuan, H.; Zhuang, X.; Areias, P.; Zi, G.; Bazilevs, Y.; De Lorenzis, L.; Rabczuk, T., An extended isogeometric thin shell analysis based on Kirchhoff-Love theory, Comput. Methods Appl. Mech. Engrg., 284, 265-291 (2015) · Zbl 1423.74811
[64] Zehnder, A. T.; Viz, M. J., Fracture mechanics of thin plates and shells under combined membrane, bending, and twisting loads, Appl. Mech. Rev., 58, 1, 37-48 (2005)
[65] Erdogan, F.; Sih, G., On the crack extension in plates under plane loading and transverse shear, J. Basic Eng., 85, 4, 519-525 (1963)
[66] Luo, Y.; Häussler-Combe, U., (An Adaptivity Procedure Based on the Gradient of Strain Energy Density and its Application in Meshless Methods. An Adaptivity Procedure Based on the Gradient of Strain Energy Density and its Application in Meshless Methods, Meshfree methods for partial differential equations (2003), Springer), 267-279 · Zbl 1012.65121
[67] Zhang, Z.; Liu, G.; Liu, T. X.; Zeng, Q. R.; Wu, L. Y., An adaptive meshless computational system for elastoplastic contact problems, Int. J. Comput. Methods, 5, 3, 433-447 (2008) · Zbl 1257.74186
[68] Tada, H.; Paris, P. C.; Irwin, G. R., The Stress Analysis of Cracks Handbook (2000), ASME press: ASME press New York
[69] Huh, N. S.; Shim, D. J.; Choi, S.; Park, K. B., Stress intensity factors and crack opening displacements for slanted axial through-wall cracks in pressurized pipes, Fatigue Fract. Eng. Mater. Struct., 31, 6, 428-440 (2008)
[70] Kiendl, J.; Ambati, M.; De Lorenzis, L.; Gomez, H.; Reali, A., Phase-field description of brittle fracture in plates and shells, Comput. Methods Appl. Mech. Engrg., 312, 374-394 (2016) · Zbl 1439.74357
[71] Zhuang, Z.; Liu, Z.; Cheng, B.; Liao, J., (Extended Finite Element Method. Extended Finite Element Method, Computational Mechanics Series (2014), Tsinghua University Press, Academic Press)
[72] Keesecker, A. L.; Dávila, C. G.; Johnson, E. R.; Starnes, J. H., Crack path bifurcation at a tear strap in a pressurized shell, Comput. Struct., 81, 16, 1633-1642 (2003)
[73] Bayesteh, H.; Mohammadi, S., XFEM fracture analysis of shells: The effect of crack tip enrichments, Comput. Mater. Sci., 50, 10, 2793-2813 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.