×

A WENO finite-difference scheme for a new class of Hamilton-Jacobi equations in nonlinear solid mechanics. (English) Zbl 1441.74293

Summary: This paper puts forth a high-order weighted essentially non-oscillatory (WENO) finite-difference scheme to numerically generate the viscosity solution of a new class of Hamilton-Jacobi (HJ) equations that has recently emerged in nonlinear solid mechanics. The solution \(W\) of the prototypical version of the HJ equations considered here corresponds physically to the homogenized free energy that describes the macroscopic magneto-electro-elastic response of a general class of two-phase particulate composite materials under arbitrary quasi-static finite deformations, electric fields, and magnetic fields in \(N = 2, 3\) dimensions. An important mathematical implication of its physical meaning is that \(W\) – although it may exhibit steep gradients – is expected to be at least twice continuously differentiable. This is in contrast to the viscosity solutions of the majority of HJ equations that have appeared in other scientific disciplines, which are merely Lipschitz continuous. Three other defining mathematical features that differentiate this new class of HJ equations from most of the existing HJ equations in the literature are that: (i) their “space” variables are defined over non-periodic unbounded or semi-unbounded domains, (ii) their Hamiltonians depend explicitly on all variables, namely, on the “space” and “time” variables, the “space” derivatives of \(W\), and on the function \(W\) itself, and (iii) in general, their integration in “time” needs to be carried out over very long “times”. The proposed WENO scheme addresses all these features by incorporating a high-order accurate treatment of the boundaries of the domains of computation and by employing a high-order accurate explicit Runge-Kutta “time” integration that remains stable over very large “time” integration ranges. The accuracy and convergence properties of the proposed scheme are demonstrated by direct comparison with a simple explicit solution \(W\) available for the case when the general HJ equation is specialized to model the elastic response of isotropic porous Gaussian elastomers. Finally, for showcasing purposes, the scheme is deployed to probe the magneto-elastic response of a novel class of magnetorheological elastomers filled with ferrofluid inclusions.

MSC:

74S20 Finite difference methods applied to problems in solid mechanics
65N06 Finite difference methods for boundary value problems involving PDEs
70H20 Hamilton-Jacobi equations in mechanics
74A20 Theory of constitutive functions in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lopez-Pamies, O., Elastic dielectric composites: Theory and application to particle-filled ideal dielectrics, J. Mech. Phys. Solids, 64, 61-82 (2014)
[2] Crandall, M.; Lions, P., Viscosity solutions of HJ equations, Trans. Amer. Math. Soc., 277, 1-42 (1983) · Zbl 0599.35024
[3] Bardi, M.; Capuzzo-Dolcetta, I., Optimal Control and Viscosity Solutions of HJ-Bellman Equations (1997), Springer: Springer New York · Zbl 0881.35013
[4] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces (2003), Springer: Springer New York · Zbl 1026.76001
[5] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009), Springer: Springer New York · Zbl 1227.76006
[6] Benton, S. H., The HJ Equation: A Global Approach (1977), Academic Press: Academic Press New York · Zbl 0418.49001
[7] Evans, L. C., Partial Differential Equations (2010), The American Mathematical Society · Zbl 1194.35001
[8] Crandall, M.; Lions, P., Two approximations of solutions of HJ equations, Math. Comput., 43, 1-19 (1984) · Zbl 0556.65076
[9] Osher, S.; Sethian, J., Fronts propagating with curvature dependent speed: algorithms based on HJ formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[10] Jiang, G.-S.; Peng, D., Weighted ENO schemes for HJ equations, SIAM J. Sci. Comput., 21, 2126-2143 (2000) · Zbl 0957.35014
[11] Bryson, S.; Levy, D., High-order semi-discrete central-upwind schemes for multi-dimensional HJ equations, J. Comput. Phys., 189, 63-87 (2003) · Zbl 1027.65126
[12] Hu, C.; Shu, C.-W., A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21, 666-690 (1999) · Zbl 0946.65090
[13] Born, M.; Wolf, E.; Bhatia, A. B., Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (2003), Cambridge University Press
[14] Maslov, V. P.; Fedoriuk, M. V., Semi-Classical Approximation in Quantum Mechanics (1981), Reidel: Reidel Dordrecht · Zbl 0458.58001
[15] Fleming, W. H.; Rishel, R., Deterministic and Stochastic Optimal Control (1975), Springer-Verlag: Springer-Verlag New York · Zbl 0323.49001
[16] Bruggeman, D. A.G., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. [Calculation of various physical constants in heterogeneous substances. I. Dielectric constants and conductivity of composites from isotropic substances], Ann. Phys., 416, 636-664 (1935)
[17] Norris, A. N., A differential scheme for the effective moduli of composites, Mech. Mater., 4, 1-16 (1985)
[18] Lopez-Pamies, O., An exact result for the macroscopic response of particle-reinforced Neo-Hookean solids, J. Appl. Mech., 77, Article 021016 pp. (2010)
[19] Tartar, L., (Krée, P., Estimations fines des coefficients homogénéisés. Estimations fines des coefficients homogénéisés, Ennio de Giorgi Colloquium, Research Notes in Mathematics, vol. 125 (1985), Pitman Publishing Ltd: Pitman Publishing Ltd London), 168-187, [Fine estimations of homogenized coefficients] · Zbl 0586.35004
[20] Francfort, G. A.; Murat, F., Homogenization and optimal bounds in linear elasticity, Arch. Ration. Mech. Anal., 94, 307-334 (1986) · Zbl 0604.73013
[21] deBotton, G., Transversely isotropic sequentially laminated composites in finite elasticity, J. Mech. Phys. Solids, 53, 1334-1361 (2005) · Zbl 1120.74319
[22] Idiart, M. I., Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates, J. Mech. Phys. Solids, 56, 2599-2617 (2008) · Zbl 1171.74407
[23] Lopez-Pamies, O.; Idiart, M. I., An exact result for the macroscopic behavior of porous Neo-Hookean solids, J. Elast., 95, 99-105 (2009) · Zbl 1160.74019
[24] Lopez-Pamies, O.; Idiart, M. I., Fiber-reinforced hyperelastic solids: A realizable homogenization constitutive theory, Journal of Engineering Mathematics, 68, 57-83 (2010) · Zbl 1303.74013
[25] Lopez-Pamies, O.; Idiart, M. I.; Nakamura, T., Cavitation in elastomeric solids: I — A defect-growth theory, J. Mech. Phys. Solids, 59, 1464-1487 (2011) · Zbl 1270.74025
[26] Dorfmann, A.; Ogden, R. W., Nonlinear magnetoelastic deformations, Q. J. Mech. Appl. Math., 57, 599-622 (2004) · Zbl 1089.74020
[27] Dorfmann, A.; Ogden, R. W., Nonlinear electroelasticity, Acta Mech., 174, 167-183 (2005) · Zbl 1066.74024
[28] Lopez-Pamies, O., Onset of cavitation in compressible, isotropic, hyperelastic solids, J. Elasticity, 94, 115-145 (2009) · Zbl 1160.74317
[29] Lopez-Pamies, O.; Nakamura, T.; Idiart, M. I., Cavitation in elastomeric solids: II — Onset-of-cavitation surfaces for Neo-Hookean materials, J. Mech. Phys. Solids, 59, 1488-1505 (2011) · Zbl 1270.74026
[30] Lopez-Pamies, O.; Goudarzi, T.; Nakamura, T., The nonlinear elastic response of suspensions of rigid inclusions in rubber: I — An exact result for dilute suspensions, J. Mech. Phys. Solids, 61, 1-18 (2013) · Zbl 1258.74017
[31] Spinelli, S. A.; Lopez-Pamies, O., A general closed-form solution for the overall response of piezoelectric composites with periodic and random particulate microstructures, Int. J. Solids Struct., 51, 2979-2989 (2014)
[32] Spinelli, S. A.; Lefèvre, V.; Lopez-Pamies, O., Dielectric elastomer composites: A general closed-form solution in the small-deformation limit, J. Mech. Phys. Solids, 83, 263-284 (2015) · Zbl 1327.74030
[33] Lefèvre, V.; Lopez-Pamies, O., Nonlinear electroelastic deformations of dielectric elastomer composites: I — Ideal elastic dielectrics, J. Mech. Phys. Solids, 99, 409-437 (2017)
[34] Stratton, J. S., Electromagnetic Theory (1941), McGraw-Hill · JFM 67.1119.01
[35] Lefèvre, V.; Danas, K.; Lopez-Pamies, O., A general result for the magnetoelastic response of isotropic suspensions of iron and ferrofluid particles in rubber, with applications to spherical and cylindrical specimens, J. Mech. Phys. Solids, 107, 343-364 (2017)
[36] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[37] Liu, X.-D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212 (1994) · Zbl 0811.65076
[38] Shu, C.-W., High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51, 82-126 (2009) · Zbl 1160.65330
[39] LeVeque, R., Finite Difference Methods for Ordinary and Partial Differential Equations (2007), SIAM: SIAM Philadelphia · Zbl 1127.65080
[40] Henrick, A. K.; Aslam, T. D.; Powers, J. M., Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points, J. Comput. Phys., 207, 542-567 (2005) · Zbl 1072.65114
[41] Tan, S.; Shu, C.-W., Inverse Lax-Wendroff procedure for numerical boundary conditions of conservations laws, J. Comput. Phys., 229, 8144-8166 (2010) · Zbl 1198.65174
[42] Shu, C.-W., High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments, J. Comput. Phys., 316, 598-613 (2016) · Zbl 1349.65486
[43] Souganidis, P. E., Approximation scheme for viscosity solutions of HJ equations, J. Differ. Equations, 59, 1-43 (1985) · Zbl 0536.70020
[44] Osher, S.; Shu, C.-W., High-order essentially nonoscillatory schemes for HJ equations, SIAM J. Numer. Anal., 28, 907-922 (1991) · Zbl 0736.65066
[45] Kurganov, A.; Noelle, S.; Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and HJ equations, SIAM J. Sci. Comput., 23, 707-740 (2001) · Zbl 0998.65091
[46] Lawson, J. D., An order five Runge-Kutta process with extended region of stability, SIAM J. Numer. Anal., 3, 593-597 (1966) · Zbl 0154.40602
[47] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[48] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability preserving high order time discretization methods, SIAM Rev., 43, 89-112 (2001) · Zbl 0967.65098
[49] Gustafsson, B.; Kreiss, H. O.; Oliger, J., Time Dependent Problems and Difference Methods (1995), John Wiley and Sons · Zbl 0843.65061
[50] Abgrall, R., Numerical discretization of the first-order HJ equation on triangular meshes, Comm. Pure Appl. Math., 49, 1339-1373 (1996) · Zbl 0870.65116
[51] Lambert, J. D., Numerical Methods for Ordinary Differential Systems: The Initial Value Problem (1991), John Wiley and Sons: John Wiley and Sons New York · Zbl 0745.65049
[52] Diguet, G.; Beaugnon, E.; Cavaillé, J. Y., From dipolar interactions of a random distribution of ferromagnetic particles to magnetostriction, J. Magn. Magn. Mater., 321, 396-401 (2009)
[53] Danas, K.; Kankanala, S. V.; Triantafyllidis, N., Experiments and modeling of iron-particle-filled magnetorheological elastomers, J. Mech. Phys. Solids, 60, 120-138 (2012)
[54] Keip, M.-A.; Rambausek, M., A multiscale approach to the computational characterization of magnetorheological elastomers, Int. J. Numer. Meth. Eng., 107, 338-360 (2016) · Zbl 1352.74088
[55] Keip, M.-A.; Rambausek, M., Computational and analytical investigations of shape effects in the experimental characterization of magnetorheological elastomers, Int. J. Solids Struct., 121, 1-25 (2017)
[56] Labusch, M.; Schröder, J.; Keip, M.-A., An FE \({}^2\)-scheme for magneto-electro-mechanically coupled boundary value problems, (Schröder, J.; Lupascu, D. C., Ferroic Functional Materials: Experiments, Modeling and Simulation (2018), Springer)
[57] Brown, W. F., Magnetoelastic Interactions (1966), Springer-Verlag: Springer-Verlag Berlin
[58] Lefèvre, V.; Lopez-Pamies, O., Nonlinear electroelastic deformations of dielectric elastomer composites: II — Non-Gaussian elastic dielectric, J. Mech. Phys. Solids, 99, 438-470 (2017)
[59] Shrimali, B.; Lefèvre, V.; Lopez-Pamies, O., A simple explicit homogenization solution for the macroscopic elastic response of isotropic porous elastomers, J. Mech. Phys. Solids, 122, 364-380 (2019)
[60] Demidov, S. S., The study of partial differential equations of the first order in the 18th and 19th centuries, Arch. Hist. Exact Sci., 26, 4, 325-350 (1982) · Zbl 0498.01007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.