×

Influence of the liquid pressure on collapse of a vapor bubble in hot acetone. (English) Zbl 1441.76128

Summary: Compression of the content of a vapor cavitation bubble during its collapse in hot acetone is studied. The temperature of liquid is 419 K, its pressure is varied in the range from 15 to 150 bar. A realistic model is used, in which the dynamics of vapor in the bubble and of the surrounding liquid is governed by the gas dynamics equations. The nonstationary heat conductivity of vapor and liquid, and the non-equilibrium heat and mass transfer across the bubble surface are taken into account. Wide-range equations of state are applied. It is shown that as the liquid pressure increases, three scenarios of the bubble content compression are successively realized. In the first scenario, the compression is nearly uniform. In the second and third scenarios, the bubble content is compressed by radially convergent isentropic and shock waves, respectively. The shock wave scenario, which arises starting with a pressure of about 90 bar, is realized in three versions.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76Q05 Hydro- and aero-acoustics
76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] N. S. Khabeev, “The question of the uniform-pressure condition in bubble dynamics,” Fluid Dyn. 45, 208-210 (2010). · Zbl 1215.76102 · doi:10.1134/S0015462810020055
[2] S. J. Shaw and P. D. M. Spelt, “Shock emission from collapsing gas bubbles,” J. Fluid Mech. 646, 363-373 (2010). · Zbl 1189.76333 · doi:10.1017/S0022112009993338
[3] W. C. Moss, D. B. Clarke, and D. A. Young, “Calculated pulse widths and spectra of a single sonoluminescing bubble,” Science (Washington, DC, U. S.) 276, 1398-1401 (1997). · doi:10.1126/science.276.5317.1398
[4] R. I. Nigmatulin, I. Sh. Akhatov, A. S. Topolnikov, R. Kh. Bolotnova, N. K. Vakhitova, R. T. Lahey, Jr., and R. P. Taleyarkhan, “The theory of supercompression of vapor bubbles and nano-scale thermonuclear fusion,” Phys. Fluid 17, 107106 (2005). · Zbl 1188.76111 · doi:10.1063/1.2104556
[5] A. Bass, S. J. Ruuth, C. Camara, B. Merriman, and S. Putterman, “Molecular dynamics of extreme mass segregation in a rapidly collapsing bubble,” Phys. Rev. Lett. 101, 234301 (2008). · doi:10.1103/PhysRevLett.101.234301
[6] A. A. Aganin, M. A. Ilgamov, and D. Yu. Toporkov, “Dependence of vapor compression inside cavitation bubbles in water and acetone on the pressure of liquid,” Vestn. Bashkir. Univ. 20, 807-812 (2015).
[7] R. I. Nigmatulin, A. A. Aganin, M. A. Ilgamov, and D. Yu. Toporkov, “Strong compression of vapor in cavitation bubbles in water and acetone,” Vestn. Bashkir. Univ. 22, 580-585 (2017).
[8] A. A. Aganin, M. A. Ilgamov, and D. Yu. Toporkov, “Dependence of vapor compression in cavitation bubbles in water and benzol on liquid pressure,” Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 158, 231-242 (2016).
[9] R. I. Nigmatulin, Dynamics of Multiphase Media (Hemisphere, New York, 1991).
[10] R. I. Nigmatulin and R. Kh. Bolotnova, “Wide-range equation of state for organic liquids: Acetone as an example,” Dokl. Phys. 52, 442-446 (2007). · Zbl 1423.76393 · doi:10.1134/S1028335807080095
[11] A. A. Aganin, “Dynamics of a small bubble in a compressible fluid,” Int. J. Numer. Meth. Fluids 33, 157-174 (2000). · Zbl 1066.76053 · doi:10.1002/(SICI)1097-0363(20000530)33:2<157::AID-FLD6>3.0.CO;2-A
[12] W. C. Moss, D. B. Clarke, J. W. White, and D. A. Young, “Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence,” Phys. Fluids 6, 2979-2985 (1994). · doi:10.1063/1.868124
[13] A. A. Aganin, R. I. Nigmatulin, M. A. Ilgamov, and I. Sh. Akhatov, “Dynamics of a gas bubble situated in the center of spherical liquid volume,” Dokl. Phys. 44, 734-738 (1999). · Zbl 1033.76500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.