Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media. (English) Zbl 1442.65251

Summary: In this paper, we study the robust linearization of nonlinear poromechanics of unsaturated materials. The model of interest couples the Richards equation with linear elasticity equations, generalizing the classical Biot equations. In practice a monolithic solver is not always available, defining the requirement for a linearization scheme to allow the use of separate simulators. It is not met by the classical Newton method. We propose three different linearization schemes incorporating the fixed-stress splitting scheme, coupled with an L-scheme, Modified Picard and Newton linearization of the flow equations. All schemes allow the efficient and robust decoupling of mechanics and flow equations. In particular, the simplest scheme, the Fixed-Stress-L-scheme, employs solely constant diagonal stabilization, has low cost per iteration, and is very robust. Under mild, physical assumptions, it is theoretically shown to be a contraction. Due to possible break-down or slow convergence of all considered splitting schemes, Anderson acceleration is applied as post-processing. Based on a special case, we justify theoretically the general ability of the Anderson acceleration to effectively accelerate convergence and stabilize the underlying scheme, allowing even non-contractive fixed-point iterations to converge. To our knowledge, this is the first theoretical indication of this kind. Theoretical findings are confirmed by numerical results. In particular, Anderson acceleration has been demonstrated to be very effective for the considered Picard-type methods. Finally, the Fixed-Stress-Newton scheme combined with Anderson acceleration shows the best performance among the splitting schemes.


65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage


Anderson; DUNE
Full Text: DOI arXiv


[1] Biot, M., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01
[2] Coussy, O., Poromechanics (2004), Wiley
[3] Kim, J.; Tchelepi, H. A.; Juanes, R., Rigorous coupling of geomechanics and multiphase flow with strong capillarity, Soc. Pet. Eng. (2013)
[4] van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Am. J., 44, 5, 892-898 (1980)
[5] Settari, A.; Mourits, F., A coupled reservoir and geomechanical simulation system, Soc. Pet. Eng., 3, 219-226 (1998)
[6] White, J. A.; Borja, R. I., Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics, Comput. Geosci., 15, 4, 647 (2011) · Zbl 1367.76034
[7] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics, Soc. Pet. Eng. (2011) · Zbl 1228.74106
[8] Mikelić, A.; Wheeler, M. F., Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 3, 455-461 (2013) · Zbl 1392.35235
[9] Both, J. W.; Borregales, M.; Nordbotten, J. M.; Kumar, K.; Radu, F. A., Robust fixed stress splitting for Biot’s equations in heterogeneous media, Appl. Math. Lett., 68, 101-108 (2017) · Zbl 1383.74025
[10] Bause, M.; Radu, F. A.; Köcher, U., Space-time finite element approximation of the Biot poroelasticity system with iterative coupling, Comput. Methods Appl. Mech. Engrg., 320, 745-768 (2017)
[12] Dana, S.; Ganis, B.; Wheeler, M. F., A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs, J. Comput. Phys., 352, 1-22 (2018) · Zbl 1375.76085
[13] Castelletto, N.; White, J. A.; Tchelepi, H. A., Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech., 39, 14, 1593-1618 (2015)
[14] Castelletto, N.; White, J. A.; Ferronato, M., Scalable algorithms for three-field mixed finite element coupled poromechanics, J. Comput. Phys., 327, 894-918 (2016) · Zbl 1373.76312
[15] White, J. A.; Castelletto, N.; Tchelepi, H. A., Block-partitioned solvers for coupled poromechanics: A unified framework, Comput. Methods Appl. Mech. Engrg., 303, 55-74 (2016)
[17] Gaspar, F. J.; Rodrigo, C., On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics, Comput. Methods Appl. Mech. Engrg., 326, 526-540 (2017)
[18] Slodicka, M., A robust and efficient linearization scheme for doubly nonlinear and degenerate parabolic problems arising in flow in porous media, SIAM J. Sci. Comput., 23, 5, 1593-1614 (2002), https://doi.org/10.1137/S1064827500381860 · Zbl 1014.76065
[19] Pop, I. S.; Radu, F. A.; Knabner, P., Mixed finite elements for the Richards’ equation: Linearization procedure, J. Comput. Appl. Math., 168, 1, 365-373 (2004) · Zbl 1057.76034
[20] Radu, F. A.; Nordbotten, J. M.; Pop, I. S.; Kumar, K., A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media, J. Comput. Appl. Math., 289, 134-141 (2015) · Zbl 1320.76084
[21] Radu, F. A.; Kumar, K.; Nordbotten, J. M.; Pop, I. S., A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities, IMA J. Numer. Anal., 38, 2, 884-920 (2018) · Zbl 1477.76055
[22] List, F.; Radu, F. A., A study on iterative methods for solving Richards’ equation, Comput. Geosci., 20, 2, 341-353 (2016) · Zbl 1396.65143
[24] Seus, D.; Mitra, K.; Pop, I. S.; Radu, F. A.; Rohde, C., A linear domain decomposition method for partially saturated flow in porous media, Comput. Methods Appl. Mech. Engrg., 333, 331-355 (2018)
[25] Borregales, M.; Radu, F. A.; Kumar, K.; Nordbotten, J. M., Robust iterative schemes for non-linear poromechanics, Comput. Geosci. (2018) · Zbl 1402.65109
[26] Celia, M. A.; Bouloutas, E. T.; Zarba, R. L., A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26, 7, 1483-1496 (1990)
[27] Anderson, D. G., Iterative procedures for nonlinear integral equations, J. Assoc. Comput. Mach., 12, 4, 547-560 (1965) · Zbl 0149.11503
[28] Lott, P.; Walker, H.; Woodward, C.; Yang, U., An accelerated Picard method for nonlinear systems related to variably saturated flow, Adv. Water Resour., 38, 92-101 (2012)
[29] Fang, H.; Saad, Y., Two classes of multisecant methods for nonlinear acceleration, Numer. Linear Algebra Appl., 16, 3, 197-221 (2009) · Zbl 1224.65134
[30] Walker, H. F.; Ni, P., Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal., 49, 4, 1715-1735 (2011) · Zbl 1254.65067
[31] Toth, A.; Kelley, C. T., Convergence analysis for Anderson acceleration, SIAM J. Numer. Anal., 53, 2, 805-819 (2015) · Zbl 1312.65083
[32] Paniconi, C.; Putti, M., A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems, Water Resour. Res., 30, 12, 3357-3374 (1994)
[34] Haga, J. B.; Osnes, H.; Langtangen, H. P., On the causes of pressure oscillations in low-permeable and low-compressible porous media, Int. J. Numer. Anal. Methods Geomech., 36, 12, 1507-1522 (2012)
[36] Haga, J. B.; Osnes, H.; Langtangen, H. P., A parallel block preconditioner for large-scale poroelasticity with highly heterogeneous material parameters, Comput. Geosci., 16, 3, 723-734 (2012)
[37] Arbogast, T.; Obeyesekere, M.; Wheeler, M. F., Numerical methods for the simulation of flow in root-soil systems, SIAM J. Numer. Anal., 30, 6, 1677-1702 (1993) · Zbl 0792.76103
[38] Arbogast, T.; Wheeler, M. F.; Zhang, N.-Y., A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal., 33, 1669-1687 (1996) · Zbl 0856.76033
[39] Radu, F.; Pop, I. S.; Knabner, P., Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation, SIAM J. Numer. Anal., 42, 4, 1452-1478 (2004) · Zbl 1159.76352
[40] Radu, F. A.; Wang, W., Convergence analysis for a mixed finite element scheme for flow in strictly unsaturated porous media, Nonlinear Anal. RWA, 15, 266-275 (2014) · Zbl 1302.76108
[41] Showalter, R.; Su, N., Partially saturated flow in a poroelastic medium, Discrete Contin. Dyn. Syst. Ser. B, 1, 4, 403-420 (2001) · Zbl 1004.76090
[42] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework, Computing, 82, 2, 103-119 (2008) · Zbl 1151.65089
[43] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Kornhuber, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE, Computing, 82, 2, 121-138 (2008) · Zbl 1151.65088
[44] Blatt, M.; Burchardt, A.; Dedner, A.; Engwer, C.; Fahlke, J.; Flemisch, B.; Gersbacher, C.; Gräser, C.; Gruber, F.; Grüninger, C.; Kempf, D.; Klöfkorn, R.; Malkmus, T.; Müthing, S.; Nolte, M.; Piatkowski, M.; Sander, O., The distributed and unified numerics environment, version 2.4, Arch. Numer. Softw., 4, 100, 13-29 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.