Robust block preconditioners for Biot’s model. (English) Zbl 1442.65342

Bjørstad, Petter E. (ed.) et al., Domain decomposition methods in science and engineering XXIV. Proceedings of the 24th international conference, Svalbard, Norway, February 6–10, 2017. Cham: Springer. Lect. Notes Comput. Sci. Eng. 125, 3-16 (2018).
Summary: In this paper, we design robust and efficient block preconditioners for the two-field formulation of Biot’s consolidation model, where stabilized finite-element discretizations are used. The proposed block preconditioners are based on the well-posedness of the discrete linear systems. Block diagonal (norm-equivalent) and block triangular preconditioners are developed, and we prove that these methods are robust with respect to both physical and discretization parameters. Numerical results are presented to support the theoretical results.
For the entire collection see [Zbl 1430.65002].


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
74B10 Linear elasticity with initial stresses
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65F10 Iterative numerical methods for linear systems
65F08 Preconditioners for iterative methods
76M10 Finite element methods applied to problems in fluid mechanics
74S05 Finite element methods applied to problems in solid mechanics
35Q35 PDEs in connection with fluid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI arXiv Link


[1] J.H. Adler, X. Hu, L.T. Zikatanov, HAZMATH: A simple finite element, graph, and solver library, hazmath.net
[2] J.H. Adler, X. Hu, L.T. Zikatanov, Robust solvers for Maxwell’s equations with dissipative boundary conditions. SIAM J. Sci. Comput. 39(5), S3-S23 (2017) · Zbl 1395.65067
[3] G. Aguilar, F. Gaspar, F. Lisbona, C. Rodrigo. Numerical stabilization of Biot’s consolidation model by a perturbation on the flow equation. Int. J. Numer. Methods Eng. 75(11), 1282-1300 (2008) · Zbl 1158.74473
[4] T. Almani, K. Kumar, A. Dogru, G. Singh, M.F. Wheeler, Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics. Comput. Methods Appl. Mech. Eng. 311, 180-207 (2016) · Zbl 1439.74183
[5] T. Baerland, J.J. Lee, K.-A. Mardal, R. Winther, Weakly imposed symmetry and robust preconditioners for Biot’s consolidation model. Comput. Methods Appl. Math. 17(3), 377-396 (2017) · Zbl 1421.74095
[6] M. Bause, F.A. Radu, U. Köcher, Space-time finite element approximation of the Biot poroelasticity system with iterative coupling. Comput. Methods Appl. Mech. Eng. 320, 745-768 (2017) · Zbl 1439.74389
[7] L. Bergamaschi, M. Ferronato, G. Gambolati, Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations. Comput. Methods Appl. Mech. Eng. 196, 2647-2656 (2007) · Zbl 1173.76330
[8] M.A. Biot, General theory of threedimensional consolidation. J. Appl. Phys. 12(2), 155-164 (1941) · JFM 67.0837.01
[9] J.W. Both, M. Borregales, J.M. Nordbotten, K. Kumar, F.A. Radu, Robust fixed stress splitting for Biot’s equations in heterogeneous media. Appl. Math. Lett. 68, 101-108 (2017) · Zbl 1383.74025
[10] N. Castelleto, J.A. White, H.A. Tchelepi, Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics. Int. J. Numer. Anal. Methods Geomech. 39(14), 1593-1618 (2015)
[11] N. Castelletto, J.A. White, M. Ferronato, Scalable algorithms for three-field mixed finite element coupled poromechanics. J. Comput. Phys. 327, 894-918 (2016) · Zbl 1373.76312
[12] S.C Eisenstat, H.C. Elman, M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345-357 (1983) · Zbl 0524.65019
[13] H.C. Elman, Iterative methods for large, sparse, nonsymmetric systems of linear equations, Ph.D. thesis, Yale University New Haven, Conn, 1982
[14] M. Ferronato, L. Bergamaschi, G. Gambolati, Performance and robustness of block constraint preconditioners in finite element coupled consolidation problems. Int. J. Numer. Methods Eng. 81(3), 381-402 (2010) · Zbl 1183.74271
[15] F.J. Gaspar, C. Rodrigo, On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics. Comput. Methods Appl. Mech. Eng. 326, 526-540 (2017) · Zbl 1439.74413
[16] F.J. Gaspar, F.J. Lisbona, C.W. Oosterlee, R. Wienands, A systematic comparison of coupled and distributive smoothing in multigrid for the poroelasticity system. Numer. Linear Algebra Appl. 11(2-3), 93-113 (2004) · Zbl 1164.65344
[17] F.J. Gaspar, J.L. Gracia, F.J. Lisbona, C.W. Oosterlee, Distributive smoothers in multigrid for problems with dominating grad-div operators. Numer. Linear Algebra Appl. 15(8), 661-683 (2008) · Zbl 1212.65484
[18] A. Greenbaum, Iterative Methods for Solving Linear Systems (SIAM, Philadelphia, 1997) · Zbl 0883.65022
[19] X. Hu, C. Rodrigo, F.J. Gaspar, L.T. Zikatanov, A nonconforming finite element method for the Biot’s consolidation model in poroelasticity. J. Comput. Appl. Math. 310, 143-154 (2017) · Zbl 1381.76175
[20] J. Kim, Sequential methods for coupled geomechanics and multiphase flow, Ph.D. thesis, Stanford University, 2010
[21] J. Kim, H.A. Tchelepi, R. Juanes, Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, in SPE Reservoir Simulation Symposium (Society of Petroleum Engineers, 2009)
[22] J. Kim, H.A. Tchelepi, R. Juanes, Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Eng. 200(13), 1591-1606 (2011) · Zbl 1228.74101
[23] J.J. Lee, K.-A. Mardal, R. Winther, Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comput. 39(1), A1-A24 (2017) · Zbl 1381.76183
[24] D. Loghin, A.J. Wathen, Analysis of preconditioners for saddle-point problems. SIAM J. Sci. Comput. 25(6), 2029-2049 (2004) · Zbl 1067.65048
[25] P. Luo, C. Rodrigo, F.J. Gaspar, C.W. Oosterlee, On an Uzawa smoother in multigrid for poroelasticity equations. Numer. Linear Algebra Appl. 24, e2074 (2017) · Zbl 1424.76041
[26] Y. Ma, K. Hu, X. Hu, J. Xu, Robust preconditioners for incompressible MHD models. J. Comput. Phys. 316, 721-746 (2016) · Zbl 1349.76629
[27] K.A. Mardal, R. Winther, Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18, 1-40 (2011) · Zbl 1249.65246
[28] A. Mikelić, M.F. Wheeler, Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17(3), 455-461 (2013) · Zbl 1392.35235
[29] C. Rodrigo, F.J. Gaspar, X. Hu, L.T. Zikatanov, Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput. Methods Appl. Mech. Eng. 298, 183-204 (2016) · Zbl 1425.74164
[30] R. Stenberg, A technique for analysing finite element methods for viscous incompressible flow. Int. J. Numer. Methods Fluids 11(6) 935-948 (1990) · Zbl 0704.76017
[31] J. · Zbl 1425.74497
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.