×

Approximating solutions of Fredholm integral equations via a general spline maximum entropy method. (English) Zbl 1442.65456

Summary: In this paper, we describe a general spline maximum entropy method for the approximation of solutions for solving Fredholm integral equations. The general spline maximum entropy method allows to extract piecewise linear, piecewise quadratic, piecewise cubic, piecewise quartic, piecewise quintic and other maximum entropy methods for solving Fredholm integral equations. We present numerical examples of piecewise linear, piecewise quadratic, piecewise cubic, piecewise quartic, piecewise quintic and other piecewise maximum entropy methods for solving Fredholm integral equations of second kind and first kind respectively. A proof of convergence for the piecewise spline maximum entropy method is also presented.

MSC:

65R20 Numerical methods for integral equations
45B05 Fredholm integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbasbandy, A., Numerical solutions of the integral equations: homotopy perturbation method and Adomian’s decomposition method, Appl. Math. Comput., 173, 493-500 (2006) · Zbl 1090.65143
[2] Adamiak, K., Application of integral equations to solving inverse problems of stationary electromagnetic fields, Int. J. Numer. Methods Eng., 21, 1447-1458 (1985) · Zbl 0578.65138 · doi:10.1002/nme.1620210807
[3] Atkinson, KE, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind (1976), Philadelphia: SIAM, Philadelphia · Zbl 0353.65069
[4] Avazzadeh, Z.; Heydari, M.; Loghmani, GB, Numerical solution of Fredholm integral equations of the second kind by using integral mean value theorem, Appl. Math. Model., 35, 2374-2383 (2011) · Zbl 1217.65236 · doi:10.1016/j.apm.2010.11.056
[5] Arikoglu, A.; Ozkol, I., Solutions of integral and integro-differential equation systems by using differential transform method, Comput. Math. Appl., 56, 2411-2417 (2008) · Zbl 1165.45300 · doi:10.1016/j.camwa.2008.05.017
[6] Babolian, E.; Biazar, J.; Vahidi, AR, The decomposition method applied to systems of Fredholm integral equations of the second kind, Appl. Math. Comput., 148, 443-452 (2004) · Zbl 1042.65104
[7] Babolian, E.; Delves, LM, An augmented Galerkin method for first kind Fredholm equations, IMA J. Appl. Math., 24, 157-174 (1979) · Zbl 0428.65065 · doi:10.1093/imamat/24.2.157
[8] Berrut, J-P, A Fredholm integral equation of the second kind for conformal mapping, J. Comput. Appl. Math., 14, 1-2, 99-110 (1986) · Zbl 0577.30010 · doi:10.1016/0377-0427(86)90132-9
[9] Borwein, JM; Lewis, AS, Convergence of the best entropy estimates, SIAM J. Optim., 1, 2, 191-205 (1991) · Zbl 0756.41037 · doi:10.1137/0801014
[10] Borwein, JM; Lewis, AS, On the convergence of moment problems, Trans. Am. Math. Soc., 325, 1, 249-271 (1991) · Zbl 0741.41021 · doi:10.1090/S0002-9947-1991-1008695-8
[11] Biazar, J.; Ghazvini, H., Numerical solution for special nonlinear Fredholm integral equation by HPM, Appl. Math. Comput., 195, 681-687 (2008) · Zbl 1132.65115
[12] Bruer, P.; Fassler, M.; Jaroniec, M., Numerical solutions of the adsorption integral equation utilizing the spline functions, Thin Solid Films, 123, 245-272 (1985) · doi:10.1016/0040-6090(85)90165-8
[13] Ding, J., A maximum entropy method for solving Frobenius-Perron equations, Appl. Math. Comput., 93, 155-168 (1998) · Zbl 0940.37001
[14] Ding, J.; Jin, C.; Rhee, NH; Zhou, A., A maximum entropy method based on piecewise linear functions for the recovery of a stationary density of interval maps, J. Stat. Phys., 145, 1620-1639 (2011) · Zbl 1231.37042 · doi:10.1007/s10955-011-0366-9
[15] Ding, J.; Mead, LR, The maximum entropy method applied to stationary density computation, Appl. Math. Comput., 185, 658-666 (2007) · Zbl 1112.65007
[16] Ding, J.; Rhee, NH, A unified maximum entropy method via spline functions for Frobenius-Perron operators, Numer. Algebra Contin. Opt., 3, N0, 2 (2013) · Zbl 1268.41020
[17] Ding, J.; Rhee, NH, A maximum entropy method based on orthogonal polynomials for Frobenius—Perron operators, Adv. Appl. Math. Mech., 3, 204-218 (2011) · Zbl 1262.41013 · doi:10.4208/aamm.10-m1022
[18] Ding, J.; Rhee, NH, Birkhoff’s ergodic theorem and the piecewise constant maximum entropy method for Frobenius-Perron operators, Int. J. Comput. Math., 89, 1083-1091 (2012) · Zbl 1263.41012 · doi:10.1080/00207160.2012.680446
[19] Gorguis, A., Charpit and Adomian for solving integral equations, Appl. Math. Comput., 193, 446-454 (2007) · Zbl 1193.65218
[20] Golbabai, A.; Mammadov, M.; Seifollahi, S., Solving a system of nonlinear integral equations by an RBF network, Comput. Math. Appl., 57, 1651-1658 (2009) · Zbl 1186.45009 · doi:10.1016/j.camwa.2009.03.038
[21] Golbabai, A.; Seifollahi, S., Numerical solution of the second kind integral equations using radial basis function networks, Appl. Math. Comput., 174, 877-883 (2006) · Zbl 1090.65149
[22] Inoue, M.; Kuroumaru, M.; Yamaguchi, S., A solution of Fredholm integral equation by means of the spline fit approximation, Comput. Fluids, 7, 33-46 (1979) · Zbl 0393.76016 · doi:10.1016/0045-7930(79)90004-5
[23] Islam, MS, Maximum entropy method for position dependent random maps, Int. J. Bifur. Chaos Appl. Sci. Eng., 21, 6, 1805-1811 (2011) · Zbl 1248.37043 · doi:10.1142/S0218127411029458
[24] Islam, MS, A piecewise quadratic maximum entropy method for invariant measures of position dependent random maps, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 24, 6, 431-445 (2017) · Zbl 1379.37080
[25] Jaynes, ET, Information theory and statistical mechanics, Phys. Rev., 106, 1957, 620-630 (1957) · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[26] Jin, C.; Ding, J., Solving Fredholm integral equations via a piecewise maximum entropy method, J. Comput. Appl. Math., 304, 130-137 (2016) · Zbl 1416.65538 · doi:10.1016/j.cam.2016.02.044
[27] Karoui, A., Wavelets: properties and approximate solution of a second kind integral equation, Comput. Math. Appl., 46, 263-277 (2003) · Zbl 1052.65123 · doi:10.1016/S0898-1221(03)90030-7
[28] Lasota, A.; Mackey, MC, Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, Applied Mathematical Sciences (1994), New York: Springer, New York · Zbl 0784.58005
[29] Liang, XZ; Liu, MC; Che, XJ, Solving second kind integral equations by Galerkin methods with continuous orthogonal wavelets, J. Comput. Appl. Math., 136, 149-161 (2001) · Zbl 1002.65143 · doi:10.1016/S0377-0427(00)00581-1
[30] Mead, LR, Approximate solutions of Fredholm integral equations by the maximum entropy method, J. Math. Phys., 27, 12, 1903-1907 (1986) · Zbl 0619.65133 · doi:10.1063/1.527267
[31] Maleknejad, K.; Kajani, MT, Solving second kind integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions, Appl. Math. Comput., 145, 623-629 (2003) · Zbl 1101.65323
[32] Maleknejad, K.; Aghazadeh, N.; Mollapourasl, R., Numerical solution of Fredholm integral equation of the first kind with collocation method and estimation of error bound, Appl. Math. Comput., 179, 352-359 (2006) · Zbl 1108.65128
[33] Mead, LR; Papanicolaou, N., Maximum entropy in the problem of moments, J. Math. Phys., 25, 2404-2417 (1984) · doi:10.1063/1.526446
[34] Maleknejad, K.; Derili, H., Numerical solution of Hammerstein integral equations by using combination of spline-collocation method and Lagrange interpolation, Appl. Math. Comput., 190, 1557-1562 (2007) · Zbl 1122.65415
[35] Nadjafi, JS; Ghorbani, A., He’s homotopy perturbation method: an effective tool for solving nonlinear integral and integro-differential equations, Comput. Math. Appl., 58, 2379-2390 (2009) · Zbl 1189.65173 · doi:10.1016/j.camwa.2009.03.032
[36] Pretorius, L.; Eyre, D., Spline-Gauss rules and the Nystrm method for solving integral equations in quantum scattering, J. Comput. Appl. Math., 18, 235-247 (1987) · Zbl 0619.65144 · doi:10.1016/0377-0427(87)90019-7
[37] Piessens, R., Computing integral transforms and solving integral equations using Chebyshev polynomial approximations, J. Comput. Appl. Math., 121, 113-124 (2000) · Zbl 0966.65103 · doi:10.1016/S0377-0427(00)00349-6
[38] Polyanin, AD; Manzhirov, AV, Handbook of Integral Equations (1998), Boca Raton: CRC Press, Boca Raton · Zbl 0896.45001
[39] Rashidinia, J.; Zarebnia, M., Numerical solution of linear integral equations by using Sinc-collocation method, Appl. Math. Comput., 168, 806-822 (2005) · Zbl 1082.65601
[40] Saadati, R.; Dehghan, M.; Vaezpour, SM; Saravi, M., The convergence of He’s variational iteration method for solving integral equations, Comput. Math. Appl., 58, 2167-2171 (2009) · Zbl 1189.65312 · doi:10.1016/j.camwa.2009.03.008
[41] Upadhay, T.; Ding, J.; Rhee, NH, A piecewise quadratic maximum entropy method for the statistical study of chaos, J. Math. Anal. Appl., 421, 1487-1501 (2015) · Zbl 1298.65192 · doi:10.1016/j.jmaa.2014.08.003
[42] Vainikko, G.; Kivinukk, A.; Lippus, J., Fast solvers of integral equations of the second kind: wavelet methods, J. Complex., 21, 243-273 (2005) · Zbl 1071.65185 · doi:10.1016/j.jco.2004.07.002
[43] Wilson, JH, Solution of integral equation important in signal processing of radar and sonar hydrophone array outputs, SIAM J. Appl. Math., 39, 1, 1-7 (1980) · Zbl 0453.65073 · doi:10.1137/0139001
[44] Xiao, JY; Wen, LH; Zhang, D., Solving second kind Fredholm integral equations by periodic wavelet Galerkin method, Appl. Math. Comput., 175, 508-518 (2006) · Zbl 1088.65122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.