×

A configurational force for adaptive re-meshing of gradient-enhanced poromechanics problems with history-dependent variables. (English) Zbl 1442.74065

Summary: We introduce a mesh-adaption framework that employs a multi-physical configurational force and Lie algebra to capture multiphysical responses of fluid-infiltrating geological materials while maintaining the efficiency of the computational models. To resolve sharp gradients of both displacement and pore pressure, we introduce an energy-estimate-free re-meshing criterion by extending the configurational force theory to consider the energy dissipation due to the fluid diffusion and the gradient-dependent plastic flow. To establish new equilibria after remeshing, the local tensorial history-dependent variables at the integration points are first decomposed into spectral forms. Then, the principal values and directions are projected onto smooth fields interpolated by the basis function of the finite element space via the Lie-algebra mapping. Our numerical results indicate that this Lie algebra operator in general leads to a new trial state closer to the equilibrium than the ones obtained from the tensor component mapping approach. A new configurational force for dissipative fluid-infiltrating porous materials that exhibit gradient-dependent plastic flow is introduced such that the remeshing may accommodate the need to resolve the sharp pressure gradient as well as the strain localization. The predicted responses are found to be not influenced by the mesh size due to the micromorphic regularization, while the adaptive meshing enables us to capture the width of deformation bands without the necessity of employing fine mesh everywhere in the domain.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L10 Soil and rock mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Pandolfi, A.; Conti, S.; Ortiz, M., A recursive-faulting model of distributed damage in confined brittle materials, J. Mech. Phys. Solids, 54, 9, 1972-2003 (2006) · Zbl 1120.74735
[2] Della Vecchia, G.; De Bellis, M. L.; Pandolfi, A., A multiscale microstructural model of damage and permeability in fractured solids, Procedia Eng., 158, 21-26 (2016)
[3] De Bellis, M.; Della Vecchia, G.; Ortiz, M.; Pandolfi, A., A linearized porous brittle damage material model with distributed frictional-cohesive faults, Eng. Geol., 215, 10-24 (2016)
[4] De Bellis, M. L.; Della Vecchia, G.; Ortiz, M.; Pandolfi, A., A multiscale model of distributed fracture and permeability in solids in all-round compression, J. Mech. Phys. Solids, 104, 12-31 (2017)
[5] Fish, J.; Jiang, T.; Yuan, Z., A staggered nonlocal multiscale model for a heterogeneous medium, Internat. J. Numer. Methods Engrg., 91, 2, 142-157 (2012) · Zbl 1246.74011
[6] Hutchinson, J.; Fleck, N., Strain gradient plasticity, (Advances in Applied Mechanics, Vol. 33 (1997), Academic), 295-361 · Zbl 0894.73031
[7] Nix, W. D.; Gao, H., Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids, 46, 3, 411-425 (1998) · Zbl 0977.74557
[8] Mühlhaus, H.-B.; Alfantis, E., A variational principle for gradient plasticity, Int. J. Solids Struct., 28, 7, 845-857 (1991) · Zbl 0749.73029
[9] Bažant, Z. P., Scaling of dislocation-based strain-gradient plasticity, J. Mech. Phys. Solids, 50, 3, 435-448 (2002) · Zbl 1116.74328
[10] Miehe, C.; Teichtmeister, S.; Aldakheel, F., Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization, Phil. Trans. R. Soc. A, 374, 2066, 20150170 (2016) · Zbl 1353.74065
[11] Wang, K.; Sun, W.; Salager, S.; Na, S.; Khaddour, G., Identifying material parameters for a micro-polar plasticity model via x-ray micro-computed tomographic (ct) images: lessons learned from the curve-fitting exercises, Int. J. Multiscale Comput. Eng., 14, 4 (2016)
[12] De Borst, R.; Mühlhaus, H.-B., Gradient-dependent plasticity: Formulation and algorithmic aspects, Internat. J. Numer. Methods Engrg., 35, 3, 521-539 (1992) · Zbl 0768.73019
[13] Gao, H.; Huang, Y.; Nix, W.; Hutchinson, J., Mechanism-based strain gradient plasticity—i. theory, J. Mech. Phys. Solids, 47, 6, 1239-1263 (1999) · Zbl 0982.74013
[14] Bažant, Z. P.; Jirásek, M., Nonlocal integral formulations of plasticity and damage: survey of progress, J. Eng. Mech., 128, 11, 1119-1149 (2002)
[15] Lim, C.; Zhang, G.; Reddy, J., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J. Mech. Phys. Solids, 78, 298-313 (2015) · Zbl 1349.74016
[16] Wang, K.; Sun, W., A unified variational eigen-erosion framework for interacting brittle fractures and compaction bands in fluid-infiltrating porous media, Comput. Methods Appl. Mech. Engrg., 318, 1-32 (2017) · Zbl 1439.74373
[17] Miehe, C.; Aldakheel, F.; Mauthe, S., Mixed variational principles and robust finite element implementations of gradient plasticity at small strains, Int. J. Numer. Methods Eng., 94, 11, 1037-1074 (2013) · Zbl 1352.74408
[18] Miehe, C.; Aldakheel, F.; Teichtmeister, S., Phase-field modeling of ductile fracture at finite strains: A robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization, Internat. J. Numer. Methods Engrg., 111, 9, 816-863 (2017)
[19] Aldakheel, F., Micromorphic approach for gradient-extended thermo-elastic-plastic solids in the logarithmic strain space, Contin. Mech. Thermodyn., 1-11 (2017) · Zbl 1392.74069
[20] Forest, S., Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 472, 2188, 20150755 (2016) · Zbl 1371.74226
[21] Forest, S., Micromorphic approach for gradient elasticity, viscoplasticity, and damage, J. Eng. Mech., 135, 3, 117-131 (2009)
[22] Semnani, S. J.; White, J. A.; Borja, R. I., Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity, Int. J. Numer. Anal. Methods Geomech., 40, 18, 2423-2449 (2016)
[23] Papastavrou, A.; Steinmann, P., On deformational and configurational poro-mechanics: dissipative versus non-dissipative modelling of two-phase solid/fluid mixtures, Arch. Appl. Mech., 80, 9, 969-984 (2010) · Zbl 1271.74069
[24] Aldakheel, F.; Miehe, C., Coupled thermomechanical response of gradient plasticity, Int. J. Plast., 91, 1-24 (2017)
[25] Roscoe, K.; Burland, J., On the generalized stress-strain behaviour of wet clay, (Engineering Plasticity (1968), Cambridge University Press) · Zbl 0233.73047
[26] Versino, D.; Bennett, K. C., Generalized radial-return mapping algorithm for anisotropic von mises plasticity framed in material eigenspace, Internat. J. Numer. Methods Engrg., 116, 3, 202-222 (2018)
[27] Borja, R. I., Plasticity: Modeling & Computation (2013), Springer Science & Business Media · Zbl 1279.74003
[28] Borja, R.; Tamagnini, C., Cam-clay plasticity part iii: Extension of the infinitesimal model to include finite strains, Comput. Methods Appl. Mech. Engrg., 155, 1, 73-95 (1998) · Zbl 0959.74010
[29] Na, S.; Sun, W., Computational thermo-hydro-mechanics for multiphase freezing and thawing porous media in the finite deformation range, Comput. Methods Appl. Mech. Engrg., 318, 667-700 (2017) · Zbl 1439.74114
[30] White, J. A.; Borja, R. I., Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients, Comput. Methods Appl. Mech. Engrg., 197, 49-50, 4353-4366 (2008) · Zbl 1194.74480
[31] Borja, R. I.; Tamagnini, C.; Amorosi, A., Coupling plasticity and energy-conserving elasticity models for clays, J. Geotech. Geoenviron. Eng., 123, 10, 948-957 (1997)
[32] Engelen, R. A.; Geers, M. G.; Baaijens, F. P., Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour, Int. J. Plast., 19, 4, 403-433 (2003) · Zbl 1090.74519
[33] Geers, M.; Peerlings, R.; Brekelmans, W.; de Borst, R., Phenomenological nonlocal approaches based on implicit gradient-enhanced damage, Acta Mech., 144, 1-2, 1-15 (2000) · Zbl 0993.74006
[34] Peerlings, R.; Geers, M.; De Borst, R.; Brekelmans, W., A critical comparison of nonlocal and gradient-enhanced softening continua, Int. J. Solids Struct., 38, 44-45, 7723-7746 (2001) · Zbl 1032.74008
[35] Peerlings, R., On the role of moving elastic-plastic boundaries in strain gradient plasticity, Modelling Simulation Mater. Sci. Eng., 15, 1, S109 (2006)
[36] Wang, K.; Sun, W., A semi-implicit micropolar discrete-to-continuum method for granular materials, (Papadrakakis, M.; Papadopoulos, V.; Stefanou, G.; Plevris, V., Proceedings of European Congress on Computational Methods in Applied Science and Engineering (2016)), 5-10
[37] Bryant, E. C.; Sun, W., A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics, Comput. Methods Appl. Mech. Engrg., 342, 561-584 (2018) · Zbl 1440.74218
[38] Qinami, A.; Bryant, E. C.; Sun, W.; Kaliske, M., Circumventing mesh bias by r-and h-adaptive techniques for variational eigenfracture, Int. J. Fract., 1-14 (2019)
[39] Díaz, A. R.; Kikuchi, N.; Taylor, J. E., A method of grid optimization for finite element methods, Comput. Methods Appl. Mech. Engrg., 41, 1, 29-45 (1983) · Zbl 0509.73071
[40] Needleman, A., Material rate dependence and mesh sensitivity in localization problems, Comput. Methods Appl. Mech. Engrg., 67, 1, 69-85 (1988) · Zbl 0618.73054
[41] Ortiz, M.; Quigley IV, J., Adaptive mesh refinement in strain localization problems, Comput. Methods Appl. Mech. Engrg., 90, 1-3, 781-804 (1991)
[42] Verfürth, R., A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math., 50, 1-3, 67-83 (1994) · Zbl 0811.65089
[43] Schrefler, B. A.; Secchi, S.; Simoni, L., On adaptive refinement techniques in multi-field problems including cohesive fracture, Comput. Methods Appl. Mech. Engrg., 195, 4-6, 444-461 (2006) · Zbl 1193.74158
[44] Babuvška, I.; Rheinboldt, W. C., Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15, 4, 736-754 (1978) · Zbl 0398.65069
[45] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineerng analysis, Internat. J. Numer. Methods Engrg., 24, 2, 337-357 (1987) · Zbl 0602.73063
[46] Zienkiewicz, O.; Zhu, J., Adaptivity and mesh generation, Internat. J. Numer. Methods Engrg., 32, 4, 783-810 (1991) · Zbl 0755.65119
[47] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 33, 7, 1331-1364 (1992) · Zbl 0769.73084
[48] Lee, N. S.; Bathe, K. J., Error indicators and adaptive remeshing in large deformation finite element analysis, Finite Elem. Anal. Des., 16, 2, 99-139 (1994) · Zbl 0804.73064
[49] Ainsworth, M.; Oden, J. T., A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg., 142, 1-2, 1-88 (1997) · Zbl 0895.76040
[50] Tabarraei, A.; Sukumar, N., Adaptive computations using material forces and residual-based error estimators on quadtree meshes, Comput. Methods Appl. Mech. Engrg., 196, 25-28, 2657-2680 (2007) · Zbl 1173.74444
[51] Mosler, J.; Ortiz, M., Variational h-adaption in finite deformation elasticity and plasticity, Internat. J. Numer. Methods Engrg., 72, 5, 505-523 (2007) · Zbl 1194.74451
[52] Mosler, J.; Ortiz, M., An error-estimate-free and remapping-free variational mesh refinement and coarsening method for dissipative solids at finite strains, Internat. J. Numer. Methods Engrg., 77, 3, 437-450 (2009) · Zbl 1155.74412
[53] Mueller, R.; Maugin, G., On material forces and finite element discretizations, Comput. Mech., 29, 1, 52-60 (2002) · Zbl 1053.74048
[54] Heintz, P.; Larsson, F.; Hansbo, P.; Runesson, K., Adaptive strategies and error control for computing material forces in fracture mechanics, Int. J. Numer. Methods Eng., 60, 7, 1287-1299 (2004) · Zbl 1060.74627
[55] Mueller, R.; Gross, D.; Maugin, G., Use of material forces in adaptive finite element methods, Comput. Mech., 33, 6, 421-434 (2004) · Zbl 1115.74373
[56] Gurtin, M. E., Configurational Forces as Basic Concepts of Continuum Physics, Vol. 137 (2008), Springer Science & Business Media
[57] Maugin, G. A., Material forces: concepts and applications, Appl. Mech. Rev., 48, 5, 213-245 (1995)
[58] Steinmann, P.; Scherer, M.; Denzer, R., Secret and joy of configurational mechanics: From foundations in continuum mechanics to applications in computational mechanics, ZAMM Z. Angew. Math. Mech., 89, 8, 614-630 (2009) · Zbl 1168.74012
[59] Buggisch, H.; Gross, D.; Krüger, K.-H., Einige erhaltungssätze der kontinuumsmechanik vom j-integral-typ, Ing.-Arch., 50, 2, 103-111 (1981) · Zbl 0452.73082
[60] Näser, B.; Kaliske, M.; Müller, R., Material forces for inelastic models at large strains: application to fracture mechanics, Comput. Mech., 40, 6, 1005-1013 (2007) · Zbl 1160.74003
[61] Maugin, G. A., Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics (2016), Chapman and Hall/CRC · Zbl 1234.74002
[62] Coussy, O.; Pereira, J.-M.; Vaunat, J., Revisiting the thermodynamics of hardening plasticity for unsaturated soils, Comput. Geotech., 37, 1-2, 207-215 (2010)
[63] Sun, W.; Andrade, J. E., Diffuse bifurcations of porous media under partially drained conditions, (Multiscale and Multiphysics Processes in Geomechanics (2011), Springer), 61-64
[64] Sun, W.; Cai, Z.; Choo, J., Mixed arlequin method for multiscale poromechanics problems, Internat. J. Numer. Methods Engrg., 111, 7, 624-659 (2017)
[65] Walpole, L., Fourth-rank tensors of the thirty-two crystal classes: multiplication tables, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 391, 1800, 149-179 (1984) · Zbl 0521.73005
[66] Crook, A. J.; Yu, J.-G.; Willson, S. M., Development of an orthotropic 3d elastoplastic material model for shale, (SPE/ISRM Rock Mechanics Conference (2002), Society of Petroleum Engineers)
[67] Ortiz, M.; Stainier, L., The variational formulation of viscoplastic constitutive updates, Comput. Methods Appl. Mech. Engrg., 171, 3-4, 419-444 (1999) · Zbl 0938.74016
[68] Weinberg, K.; Mota, A.; Ortiz, M., A variational constitutive model for porous metal plasticity, Comput. Mech., 37, 2, 142-152 (2006) · Zbl 1102.74007
[69] Mosler, J.; Bruhns, O., On the implementation of rate-independent standard dissipative solids at finite strain-variational constitutive updates, Comput. Methods Appl. Mech. Engrg., 199, 9-12, 417-429 (2010) · Zbl 1227.74014
[70] Armero, F.; Callari, C., An analysis of strong discontinuities in a saturated poro-plastic solid, Internat. J. Numer. Methods Engrg., 46, 10, 1673-1698 (1999) · Zbl 0971.74029
[71] Miehe, C.; Mauthe, S., Phase field modeling of fracture in multi-physics problems. part iii. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput. Methods Appl. Mech. Engrg., 304, 619-655 (2016) · Zbl 1425.74423
[72] Payen, D. J.; Bathe, K.-J., The use of nodal point forces to improve element stresses, Comput. Struct., 89, 5-6, 485-495 (2011)
[73] Mota, A.; Sun, W.; Ostien, J. T.; Foulk, J. W.; Long, K. N., Lie-group interpolation and variational recovery for internal variables, Comput. Mech., 1-19 (2013)
[74] Truster, T. J.; Nassif, O., Variational projection methods for gradient crystal plasticity using lie algebras, Internat. J. Numer. Methods Engrg., 110, 4, 303-332 (2017) · Zbl 1375.74021
[75] Park, F. C.; Ravani, B., Smooth invariant interpolation of rotations, ACM Trans. Graph., 16, 3, 277-295 (1997)
[76] Cramer, H.; Rudolph, M.; Steinl, G.; Wunderlich, W., A hierarchical adaptive finite element strategy for elastic-plastic problems, Comput. Struct., 73, 1-5, 61-72 (1999) · Zbl 1048.74583
[77] Bangerth, W.; Hartmann, R.; Kanschat, G., Deal. ii—a general-purpose object-oriented finite element library, ACM Trans. Math. Software (TOMS), 33, 4, 24 (2007) · Zbl 1365.65248
[78] Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kanschat, G.; Kronbichler, M.; Maier, M.; Turcksin, B.; Wells, D., The deal. ii library, version 8.4, J. Numer. Math., 24, 3, 135-141 (2016) · Zbl 1348.65187
[79] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01
[80] Biot, M. A., Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 2, 182-185 (1955) · Zbl 0067.23603
[81] Borja, R. I., One-step and linear multistep methods for nonlinear consolidation, Comput. Methods Appl. Mech. Engrg., 85, 3, 239-272 (1991) · Zbl 0764.73097
[82] Sun, W., A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain, Internat. J. Numer. Methods Engrg., 103, 11, 798-839 (2015) · Zbl 1352.76116
[83] Choo, J.; Borja, R., Stabilized mixed finite elements for deformable porous media with double porosity, Comput. Methods Appl. Mech. Engrg., 293, 131-154 (2015) · Zbl 1423.74265
[84] Sun, W.; Ostien, J. T.; Salinger, A. G., A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain, Int. J. Numer. Anal. Methods Geomech., 37, 16, 2755-2788 (2013)
[85] Zienkiewicz, O. C.; Chan, A.; Pastor, M.; Schrefler, B.; Shiomi, T., Computational Geomechanics (1999), Wiley Chichester · Zbl 0932.74003
[86] Preisig, M.; Prévost, J. H., Stabilization procedures in coupled poromechanics problems: A critical assessment, Int. J. Numer. Anal. Methods Geomech., 35, 11, 1207-1225 (2011)
[87] Sun, W.; Chen, Q.; Ostien, J. T., Modeling the hydro-mechanical responses of strip and circular punch loadings on water-saturated collapsible geomaterials, Acta Geotech. (2013)
[88] Wang, K.; Sun, W., A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain, Comput. Methods Appl. Mech. Engrg., 304, 546-583 (2016) · Zbl 1423.76286
[89] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, (SPE Reservoir Simulation Symposium (2009), Society of Petroleum Engineers) · Zbl 1228.74106
[90] Wang, K.; Sun, W., A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain, Comput. Methods Appl. Mech. Engrg., 304, 546-583 (2016) · Zbl 1423.76286
[91] Na, S.; Sun, W., Computational thermomechanics of crystalline rock, part i: A combined multi-phase-field/crystal plasticity approach for single crystal simulations, Comput. Methods Appl. Mech. Engrg., 338, 657-691 (2018) · Zbl 1440.74222
[92] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 2, 383-405 (2015) · Zbl 1398.74270
[93] Choo, J.; Sun, W., Coupled phase-field and plasticity modeling of geological materials: from brittle fracture to ductile flow, Comput. Methods Appl. Mech. Engrg., 330, 1-32 (2018) · Zbl 1439.74184
[94] Borden, M. J.; Hughes, T. J.; Landis, C. M.; Anvari, A.; Lee, I. J., A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Engrg., 312, 130-166 (2016) · Zbl 1439.74343
[95] Niandou, H.; Shao, J.; Henry, J.; Fourmaintraux, D., Laboratory investigation of the mechanical behaviour of tournemire shale, Int. J. Rock Mech. Min. Sci., 34, 1, 3-16 (1997)
[96] Zhao, Y.; Semnani, S. J.; Yin, Q.; Borja, R. I., On the strength of transversely isotropic rocks, Int. J. Numer. Anal. Methods Geomech., 42, 16, 1917-1934 (2018)
[97] Tien, Y. M.; Kuo, M. C.; Juang, C. H., An experimental investigation of the failure mechanism of simulated transversely isotropic rocks, Int. J. Rock Mech. Min. Sci., 43, 8, 1163-1181 (2006)
[98] Bryant, E. C.; Sun, W., A micromorphically regularized Cam-clay model for capturing size-dependent anisotropy of geomaterials, Comput. Methods Appl. Mech. Engrg., 354, 56-95 (2019) · Zbl 1441.74124
[100] Ortiz, M.; Pandolfi, A., A variational cam-clay theory of plasticity, Comput. Methods Appl. Mech. Engrg., 193, 27-29, 2645-2666 (2004) · Zbl 1067.74510
[101] Rudnicki, J. W.; Rice, J., Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids, 23, 6, 371-394 (1975)
[102] Sun, W., A unified method to predict diffuse and localized instabilities in sands, Geomech. Geoeng., 8, 2, 65-75 (2013)
[103] Liu, Y.; Sun, W.; Yuan, Z.; Fish, J., A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials, Internat. J. Numer. Methods Engrg., 106, 2, 129-160 (2016) · Zbl 1352.74082
[104] Wang, K.; Sun, W., Meta-modeling game for deriving theory-consistent, microstructure-based traction-separation laws via deep reinforcement learning, Comput. Methods Appl. Mech. Engrg., 346, 216-241 (2019) · Zbl 1440.74016
[105] Wang, K.; Sun, W.; Du, Q., A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with ai-guided experimentation, Comput. Mech., 1-33 (2019)
[106] De Borst, R.; Sluys, L.; Muhlhaus, H.-B.; Pamin, J., Fundamental issues in finite element analyses of localization of deformation, Eng. Comput., 10, 2, 99-121 (1993)
[107] Eringen, A., On nonlocal plasticity, Internat. J. Engrg. Sci., 19, 12, 1461-1474 (1981) · Zbl 0474.73028
[108] Vardoulakis, I.; Aifantis, E., A gradient flow theory of plasticity for granular materials, Acta Mech., 87, 3-4, 197-217 (1991) · Zbl 0735.73026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.