×

Pricing the financial Heston-Hull-White model with arbitrary correlation factors via an adaptive FDM. (English) Zbl 1442.91105

Summary: This paper is concerned with the pricing procedure of one of the most challenging models known as the Heston-Hull-White partial differential equation (PDE) in option pricing, at which the model is a time-dependent 3D linear PDE including three mixed derivative terms. The model comes from the fact that the price, the volatility and the interest rate are assumed to be stochastic processes. To contribute and avoid huge discretized systems, an adaptive distribution of the nodes (viz, nonuniform nodes) is taken into account with emphasis on the hot area of the solution curve. New adaptive finite difference (FD) formulas of higher orders are constructed on these meshes. Then, a set of semi-discretized equations is attained which is tackled by a time-stepping method. Several financial tests are discussed in detail to reveal the superiority of the proposed approach.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60H30 Applications of stochastic analysis (to PDEs, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Shaw, W. T., Modelling Financial Derivatives with Mathematica (1998), Cambridge University Press: Cambridge University Press UK · Zbl 0939.91002
[2] Briani, M.; Caramellinoy, L.; Zanette, A., A hybrid tree/finite-difierence approach for Heston-Hull-White type models, J. Comput. Finance, 21, 1-45 (2017)
[3] Hull, J.; White, A., The general Hull-White model and supercalibration, Financ. Anal. J., 57, 34-43 (2001)
[4] Heston, S. L., A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6, 327-343 (1993) · Zbl 1384.35131
[5] Schöbel, R.; Zhu, J., Stochastic volatility with an Ornstein-Uhlenbeck process: an extension, Eur. Financ. Rev., 3, 23-46 (1999) · Zbl 1028.91026
[6] Van Haastrecht, A.; Lord, R.; Pelsser, A.; Schrager, D., Pricing long-maturity equity and FX derivatives with stochastic interest rates and stochastic volatility, Insurance Math. Econ., 45, 436-448 (2009) · Zbl 1231.91461
[7] Cox, J. C.; Ingersoll, J. E.; Ross, S. A., A theory of the term structure of interest rates, Econometrica, 53, 385-407 (1985) · Zbl 1274.91447
[8] Cao, J.; Lian, G.; Roslan, T. R.N., Pricing variance swaps under stochastic volatility and stochastic interest rate, Appl. Math. Comput., 277, 72-81 (2016)
[9] Wong, H. Y.; Zhao, J., An artificial boundary method for the Hull-White model of American interest rate derivatives, Appl. Math. Comput., 217, 4627-4643 (2011) · Zbl 1237.91235
[10] Hull, J.; White, A., Using Hull-White interest rate trees, J. Derivatives, 4, 26-36 (1996)
[11] Grzelak, L. A.; Oosterlee, C. W.; Van Weeren, S., Extension of stochastic volatility equity models with the Hull-White interest rate process, Quant. Finance, 12, 89-105 (2009) · Zbl 1241.91124
[12] Brigo, D.; Mercurio, F., Interest Rate Models-Theory and Practice: With Smile, Inflation and Credit (2007), Springer Finance, Springer-Verlag: Springer Finance, Springer-Verlag Berlin
[13] Grzelak, L. A.; Oosterlee, C. W., On the Heston model with stochastic interest rates, SIAM J. Financ. Math., 2, 255-286 (2011) · Zbl 1229.91338
[14] Black, F.; Karasinski, P., Bond and option pricing when short rates are lognormal, Financ. Anal. J., 47, 52-59 (1991)
[15] Fusai, G.; Roncoroni, A., Implementing Models in Quantitative Finance: Methods and Cases (2008), Springer-Verlag: Springer-Verlag Berlin · Zbl 1213.91008
[16] Samimi, O.; Mardani, Z.; Sharafpour, S.; Mehrdoust, F., LSM algorithm for pricing American option under Heston-Hull-White’s stochastic volatility model, Comput. Econ., 50, 173-187 (2017)
[17] Piterbarg, V. V., Smiling hybrids, Risk Mag. Ltd., 19, 66-71 (2006)
[18] Grzelak, L. A.; Oosterlee, C. W., On cross-currency models with stochastic volatility and correlated interest rates, Appl. Math. Finance, 19, 1-35 (2012) · Zbl 1372.91075
[19] Haentjens, T.; In’t Hout, K. J., Alternating direction implicit finite difference schemes for the Heston-Hull-White partial differential equation, J. Comput. Finance, 16, 83-110 (2012)
[20] Knapp, R., A method of lines framework in Mathematica, J. Numer. Anal. Ind. Appl. Math., 3, 43-59 (2008) · Zbl 1154.65070
[21] Thakoor, N.; Tangman, D. Y.; Bhuruth, M., RBF-FD schemes for option valuation under models with price-dependent and stochastic volatility, Eng. Anal. Bound. Elem., 92, 207-217 (2018) · Zbl 1403.91353
[22] Atkinson, K.; Han, W., Theoretical Numerical Analysis, A Functional Analysis Framework (2009), Springer: Springer New York · Zbl 1181.47078
[23] Fornberg, B., A Practical Guide to Pseudospectral Methods (1996), Cambridge University Press: Cambridge University Press UK · Zbl 0844.65084
[24] Hozman, J.; Tichý, T., On the impact of various formulations of the boundary condition within numerical option valuation by DG method, Filomat, 30, 4253-4263 (2016) · Zbl 1461.91351
[25] Ekström, E.; Tysk, J., Boundary conditions for the single-factor term structure equation, Ann. Appl. Probab., 21, 332-350 (2011) · Zbl 1232.91679
[26] Sofroniou, M.; Knapp, R., Advanced Numerical Differential Equation Solving in Mathematica (2008), Wolfram Mathematica, Tutorial Collection: Wolfram Mathematica, Tutorial Collection USA
[29] Miller, R. K.; Michel, A. N., Ordinary Differential Equations (2007), Dover Publications: Dover Publications USA
[30] Steyer, A. J.; Van Vlec, E. S., A Lyapunov and Sacker-Sell spectral stability theory for one-step methods, BIT, 58, 749-781 (2018) · Zbl 1431.65092
[32] Gradshteyn, I. S.; Ryzhik, I. M., Tables of Integrals, Series, and Products (2000), Academic Press: Academic Press San Diego, CA · Zbl 0981.65001
[33] Loffeld, J.; Tokman, M., Comparative performance of exponential, implicit, and explicit integrators for stiff systems of ODEs, J. Comput. Appl. Math., 241, 45-67 (2013) · Zbl 1258.65067
[34] Duffy, D. J., Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach (2006), Wiley: Wiley England · Zbl 1141.91002
[35] Trott, M., The Mathematica Guidebook for Numerics (2006), Springer: Springer New York, NY, USA · Zbl 1101.65001
[36] Hoang, K. C.; Fu, Y. Y.; Song, J. H., An hp-proper orthogonal decomposition-moving least squares approach for molecular dynamics simulation, Comput. Methods Appl. Mech. Engrg., 298, 548-575 (2016)
[37] Hoang, K. C.; Kim, T. Y.; Song, J. H., Fast and accurate two-field reduced basis approximation for parametrized thermoelasticity problems, Finite Elem. Anal. Des., 141, 96-118 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.