Hypergeometric supercongruences. (English) Zbl 1443.11022

Wood, David R. (ed.) et al., 2017 MATRIX annals. Cham: Springer. MATRIX Book Ser. 2, 435-439 (2019).
Summary: We discuss two related principles for hypergeometric supercongruences, one related to accelerated convergence and the other to the vanishing of Hodge numbers.
For the entire collection see [Zbl 1411.37003].


11B65 Binomial coefficients; factorials; \(q\)-identities
11F33 Congruences for modular and \(p\)-adic modular forms
33C20 Generalized hypergeometric series, \({}_pF_q\)


Magma; LMFDB
Full Text: DOI arXiv


[1] Bosma, W., Cannon, J.J., Fieker, C., Steel, A. (eds.): Handbook of Magma Functions, 2.19 edn., 5291 pp. (2013)
[2] Dwork, B.: p-adic cycles. Publ. Math. de l’IHÉS 37, 27-115 (1969) · Zbl 0284.14008
[3] Frechette, S., Ono, K., Papanikolas, M.: Gaussian hypergeometric functions and traces of Hecke operators. Int. Math. Res. Not. 2004(60), 3233-3262 (2004) · Zbl 1088.11029
[4] LMFDB Collaboration: The L-functions and modular forms database (2017). http://www.lmfdb.org
[5] Long, L., Tu, F.-T., Yui, N., Zudilin, W.: Supercongruences for rigid hypergeometric Calabi-Yau threefolds. arXiv:1705.01663v1 · Zbl 1443.11053
[6] McCarthy, D.: On a supercongruence conjecture of Rodriguez-Villegas. Proc. Am. Math. Soc. 140, 2241-2254 (2012) · Zbl 1354.11030
[7] Osburn, R., Straub, A., Zudilin, W.: A modular supercongruence for_6F_5: an Apéry-like story. arXiv:1701.04098v1 · Zbl 1429.11039
[8] Rodriguez Villegas, F.: Hypergeometric families of Calabi-Yau manifolds. In: Calabi-Yau Varieties and Mirror Symmetry (Toronto, ON, 2001), pp. 223-231. Fields Institute Communications, vol. 38. American Mathematical Society, Providence (2003) · Zbl 1062.11038
[9] Schoen, C.: On the geometry of a special determinantal hypersurface associated to the Mumford-Horrocks vector bundle. J. Reine Angew. Math. 364, 85-111 (1986) · Zbl 0568.14022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.