×

Thermo-viscoelastic materials with fractional relaxation operators. (English) Zbl 1443.74045

Summary: The new model of linear thermo-viscoelasticity for isotropic media taking into consideration the rheological properties of the volume with fractional relaxation operators is given. The governing equations are taken in a unified system from which some essential theorems on the linear coupled and generalized theories of thermo-viscoelasticity can be easily obtained. The resulting formulation is applied to several concrete problems, a thermal shock problem and a problem for a half-space subjected to ramp-type heating as well as a problem of a layer media. Laplace transform techniques are used. According to the numerical results and its graphs, conclusion about the new theory has been constructed. Some comparisons have been shown in figures to estimate the effect of fractional relaxation operators and ramping parameter of heating with different theories of thermoelasticity.

MSC:

74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
74F05 Thermal effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chandrasekharaiah, D. S., Hyperbolic thermoelasticity: a review of recent literature, Appl. Mech. Rev., 51, 705-729, (1998)
[2] Hetnarski, R. B.; Ignaczak, J., Generalized thermoelasticity, J. Therm. Stress., 22, 451-476, (1999)
[3] Tschoegl, N., Time dependence in material properties: an overview, Mech. Time Depend. Mater., 1, 3-31, (1997)
[4] Gross, B., Mathematical structure of the theories of viscoelasticity, (1953), Hermann Paris · Zbl 0052.20901
[5] Atkinson, C.; Craster, R., Theoretical aspects of fracture mechanics, Prog. Aerosp. Sci., 31, 1-83, (1995)
[6] Rajagopal, K.; Saccomandi, G., On the dynamics of non-linear viscoelastic solids with material moduli that depend upon pressure, Int. J. Eng. Sci., 45, 41-54, (2007) · Zbl 1213.74079
[7] Ezzat, M. A.; El-Karamany, A. S., On uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with thermal relaxation, Can. J. Phys., 81, 823-833, (2003)
[8] Ezzat, M. A.; El-Karamany, A. S., The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times, Int. J. Eng. Sci., 40, 1275-1284, (2002) · Zbl 1211.74067
[9] El-Karamany, A. S.; Ezzat, M. A., On the boundary integral formulation of thermo-viscoelasticity theory, Int. J. Eng. Sci., 40, 1943-1956, (2002) · Zbl 1211.74064
[10] El-Karamany, A. S.; Ezzat, M. A., Boundary integral equation formulation for the generalized thermoviscoelasticity with two relaxation times, J. Appl. Math. Comput., 151, 347-362, (2004) · Zbl 1066.74523
[11] Ezzat, M. A.; El-Karamany, A. S.; Smaan, A. A., State space formulation to generalized thermoviscoelasticity with thermal relaxation, J. Therm. Stress., 24, 823-846, (2001)
[12] Ezzat, M. A.; Othman, M. I.; El-Karamany, A. S., State space approach to generalized thermo-viscoelasticity with two relaxation times, Int. J. Eng. Sci., 40, 283-302, (2002) · Zbl 1211.74068
[13] Othman, M. I.; Ezzat, M. A.; Zaki, S. A.; El-Karamany, A. S., Generalized thermo- viscoelastic plane waves with two-relaxation times, Int. J. Eng. Sci., 40, 1329-1347, (2002) · Zbl 1211.74075
[14] Ezzat, M. A., The relaxation effects of the volume properties of electrically conducting viscoelastic material, Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 130, 11-23, (2006)
[15] Ezzat, M. A.; Zakaria, M.; El-Karamany, A. S., Effects of modified ohm’s and fourier’s laws on generalized magnetoviscoelastic thermoelasticity with relaxation volume properties, Int. J. Eng. Sci., 48, 460-472, (2010) · Zbl 1213.74074
[16] Caputo, M.; Mainardi, F., Linear models of dissipation in an elastic solids, Riv. Nuovo Cimento (Ser. II), 1, 161-198, (1971)
[17] Caputo, M., Vibrations on an infinite viscoelastic layer with a dissipative memory, J. Acoust. Soc. Am., 56, 897-904, (1974) · Zbl 0285.73031
[18] Adolfsson, K.; Enelund, M.; Olsson, P., On the fractional order model of visco- elasticity, Mech. Time Depend. Mater., 9, 15-34, (2005)
[19] Ezzat, M. A., Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer, Phys. B, 405, 4188-4194, (2010)
[20] Ezzat, M. A., Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer, Physica B, 406, 30-35, (2011)
[21] Ezzat, M. A., Theory of fractional order in generalized thermoelectric MHD, Appl. Math. Modell., 35, 4965-4978, (2011) · Zbl 1228.76189
[22] Jumarie, G., Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time, application to merton’s optimal portfolio, Comput. Math. Appl., 59, 142-1164, (2010) · Zbl 1189.91230
[23] Ezzat, M. A.; El-Karamany, A. S., Fractional order theory of a perfect conducting thermoelastic medium, Can. J. Phys., 89, 311-318, (2011)
[24] Povstenko, Y. Z., Fundamental solutions to the fractional heat conduction equation in a ball under Robin boundary conditions, Cent. Eur. Phys., 12, 611-622, (2014) · Zbl 1290.35313
[25] Ezzat, M. A.; El-Karamany, A. S.; El-Bary, A. A.; Fayik, M. A., Fractional calculus in one-dimensional isotropic thermo-viscoelasticity, C.R. Mec., 341, 553-566, (2013)
[26] Abbas, I. A.; Zenkour, A. M., Semi-analytical and numerical solution of fractional order generalized thermoelastic in a semi-infinite medium, J. Comput. Theor. Nanosci., 11, 1592-1596, (2014)
[27] Sherief, H. H.; Abd El-Latief, A. M., Application of fractional order theory of thermoelasticity to a 1D problem for a half-space, ZAMM, 94, 509-515, (2014) · Zbl 1298.74062
[28] Menon, S.; Tang, J., A state space approach for the dynamic analysis of viscoelastic systems, Comput. Struct., 82, 1123-1130, (2004)
[29] Mukhopadhyay, B.; Bera, R., Int. J. Eng. Sci., 30, 459-469, (1992)
[30] Ezzat, M. A.; Abd-Elaal, M. Z., State space approach to viscoelastic fluid flow of hydromagnetic fluctuating boundary-layer through a porous medium, ZAMM, 77, 197-207, (1997) · Zbl 0883.76089
[31] El-Karamany, A. S.; Ezzat, M. A., Discontinuities in generalized thermo-viscoelasticity under four theories, J. Therm. Stresses, 27, 1187-1212, (2004)
[32] Lord, H.; Shulman, Y., A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 299-309, (1967) · Zbl 0156.22702
[33] Green, A.; Lindsay, K., Thermoelasticity, J. Elast., 2, 1-7, (1972) · Zbl 0775.73063
[34] Biot, M., Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 240-253, (1956) · Zbl 0071.41204
[35] Honig, G.; Hirdes, U., A method for the numerical inversion of the Laplace transform, J. Comput. Appl. Math., 10, 113-132, (1984) · Zbl 0535.65090
[36] Rabotnov, Yu. N., Elements of hereditary solid mechanics, (1981), Mir Moscow · Zbl 0515.73026
[37] Ilioushin, A. A.; Pobedria, B. E., Fundamentals of the mathematical theory of thermal-viscoelasticity, (1970), Nauka Moscow
[38] Pobedria, B. E., Coupled problems in continuum mechanics, J. Durability Plast., 2, 224-253, (1984)
[39] Ezzat, M. A., Fundamental solution in generalized magneto-thermoelasticity with two relaxation times for perfect conductor cylindrical regions, Int. J. Eng. Sci., 42, 1503-1519, (2004) · Zbl 1211.74066
[40] El-Karamany, A. S.; Ezzat, M. A., Thermal shock problem in generalized thermo-visco-elasticity under four theories, J. Eng. Sci., 42, 649-671, (2004) · Zbl 1211.74065
[41] Ezzat, M. A.; El-Bary, A. A.; El-Karamany, A. S., Two-temperature theory in generalized magneto-thermo-viscoelasticity, Can. J. Phys., 87, 329-336, (2009)
[42] Ezzat, M. A.; Zakaria, M.; El-Karamany, A. S., Thermo-electric-visco-elastic material, J. Appl. Polym. Sci., 117, 1934-1944, (2010)
[43] Ezzat, M. A., State space approach to generalized magneto-thermoelasticity with two relaxation times in a medium of perfect conductivity, Int. J. Eng. Sci., 35, 741-752, (1997) · Zbl 0902.73067
[44] Ezzat, M. A., State space approach to unsteady two-dimensional free convection flow through a porous medium, Can. J. Phys., 72, 311-317, (1994)
[45] Ezzat, M. A.; Zakaria, M.; Shaker, O.; Barakat, F., State space formulation to viscoelastic fluid flow of magnetohydrodynamic free convection through a porous medium, Acta Mech., 119, 147-164, (1996) · Zbl 0878.76003
[46] Sherief, H. H.; Abd El-Latief, A., Effect of variable thermal conductivity on a half- space under the fractional order theory of thermoelasticity, Int. J. Mech. Sci., 74, 185-189, (2013)
[47] Ezzat, M. A.; Youssef, H. M., Two-temperature theory in three-dimensional problem for thermoelastic half space subjected to ramp type heating, Mech. Adv. Mat. Struct., 21, 293-304, (2014)
[48] Ezzat, M. A.; Zakaria, A., Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium, J. Frank. Inst., 334, 685-706, (1997) · Zbl 0889.76080
[49] Ezzat, M. A.; El-Karamany, A. S.; El-Bary, A. A., Generalized thermo-viscoelasticity with memory-dependent derivatives, Int. J. Mech. Sci., 89, 470-475, (2014)
[50] Ezzat, M. A., Thermoelectric MHD with modified fourier’s law, Int. J. Therm. Sci., 50, 449-455, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.