×

zbMATH — the first resource for mathematics

Polynomial preserving virtual elements with curved edges. (English) Zbl 1444.65066
MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L. D. and Russo, A., Equivalent projectors for virtual element methods, Comput. Math. Appl.66 (2013) 376-391. · Zbl 1347.65172
[2] A. Anand, J. S. Ovall, S. E. Reynolds and S. Weiss, Trefftz finite elements on curvilinear polygons, preprint (2006), arXiv:1906.09015v1, submitted for publication. · Zbl 1440.65173
[3] Antonietti, P. F., da Veiga, L. Beirão, Mora, D. and Verani, M., A stream virtual element formulation of the Stokes problem on polygonal meshes, SIAM J. Numer. Anal.52 (2014) 386-404. · Zbl 1427.76198
[4] Antonietti, P. F., Beirão da Veiga, L., Scacchi, S. and Verani, M., A \(C^1\) virtual element method for the Cahn-Hilliard equation with polygonal meshes, SIAM J. Numer. Anal.54 (2016) 34-57. · Zbl 1336.65160
[5] Artioli, E., Beirão da Veiga, L. and Dassi, F., Curvilinear virtual elements for 2D solid mechanics applications, Comput. Methods Appl. Mech. Engrg.359 (2020) 112667, 19 pages. · Zbl 1441.74229
[6] Artioli, E., de Miranda, S., Lovadina, C. and Patruno, L., A stress/displacement virtual element method for plane elasticity problems, Comput. Methods Appl. Mech. Engrg.325 (2017) 155-174. · Zbl 1439.74040
[7] Ayuso, B., Lipnikov, K. and Manzini, G., The nonconforming virtual element method, ESAIM Math. Model. Numer. Anal.50 (2016) 879-904. · Zbl 1343.65140
[8] Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D. and Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci.23 (2013) 199-214. · Zbl 1416.65433
[9] Beirão da Veiga, L., Brezzi, F., Dassi, F., Marini, L. D. and Russo, A., A family of three-dimensional virtual elements with applications to magnetostatics, SIAM J. Numer. Anal.56 (2018) 2940-2962. · Zbl 1412.65201
[10] Beirão da Veiga, L., Brezzi, F., Marini, L. D. and Russo, A., H(div) and H(curl)-conforming VEM, Numer. Math.133 (2016) 303-332. · Zbl 1343.65133
[11] Beirão da Veiga, L., Brezzi, F., Marini, L. D. and Russo, A., Serendipity nodal VEM spaces, Comp. Fluids141 (2016) 2-12. · Zbl 1390.76292
[12] Beirão da Veiga, L., Brezzi, F., Marini, L. D. and Russo, A., Virtual element methods for general second order elliptic problems on polygonal meshes, Math. Models Methods Appl. Sci.26 (2016) 729-750. · Zbl 1332.65162
[13] Beirão da Veiga, L., Chernov, A., Mascotto, L. and Russo, A., Exponential convergence of the hp virtual element method with corner singularities, Numer. Math.138 (2018) 581-613. · Zbl 1387.65117
[14] Beirão da Veiga, L., Lovadina, C. and Russo, A., Stability analysis for the virtual element method, Math. Models Methods Appl. Sci.27 (2017) 2557-2594. · Zbl 1378.65171
[15] Beirão da Veiga, L., Lovadina, C. and Vacca, G., Divergence free virtual elements for the stokes problem on polygonal meshes, ESAIM Math. Model. Numer. Anal.51 (2017) 509-535. · Zbl 1398.76094
[16] Beirão da Veiga, L., Lovadina, C. and Vacca, G., Virtual elements for the Navier-Stokes problem on polygonal meshes, SIAM J. Numer. Anal.56 (2018) 1210-1242. · Zbl 1397.65302
[17] Beirão da Veiga, L., Mora, D., Rivera, G. and Rodríguez, R., A virtual element method for the acoustic vibration problem, Numer. Math.136 (2017) 725-736. · Zbl 1397.76059
[18] Beirão da Veiga, L., Russo, A. and Vacca, G., The virtual element method with curved edges, ESAIM Math. Model. Numer. Anal.53 (2019) 375-404. · Zbl 1426.65163
[19] Bertoluzza, S., Pennacchio, M. and Prada, D., High order vems on curved domains, Rend. Lincei Mat. Appl.30 (2019) 391-412. · Zbl 1422.65370
[20] Botti, L. and Di Pietro, D. A., Assessment of hybrid high-order methods on curved meshes and comparison with discontinuous Galerkin methods, J. Comput. Phys.370 (2018) 58-84. · Zbl 1398.65328
[21] Bramble, J. H., Dupont, T. and Thomée, V., Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections, Math. Comp.26 (1972) 869-879. · Zbl 0279.65094
[22] Bramble, J. H. and King, J. T., A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries, Math. Comp.63 (1994) 1-17. · Zbl 0810.65104
[23] Bramble, J. H. and King, J. T., A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math.6 (1996) 109-138. · Zbl 0868.65081
[24] Brenner, S. C., Guan, Q. and Sung, Li-Y., Some estimates for virtual element methods, Comput. Methods Appl. Math.17 (2017) 553-574. · Zbl 1434.65237
[25] Brezzi, F. and Marini, L. D., Virtual element methods for plate bending problems, Comput. Methods Appl. Mech. Engrg.253 (2013) 455-462. · Zbl 1297.74049
[26] Gain, A. L., Talischi, C. and Paulino, G. H., On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Engrg.282 (2014) 132-160. · Zbl 1423.74095
[27] Nečas, J., Direct methods in the theory of elliptic equations, in Springer Monographs in Mathematics (Springer, 2012), Translated from the 1967 French original. · Zbl 1246.35005
[28] Perugia, I., Pietra, P. and Russo, A., A plane wave virtual element method for the Helmholtz problem, ESAIM Math. Model. Numer. Anal.50 (2016) 783-808. · Zbl 1343.65137
[29] Wriggers, P., Rust, W. T. and Reddy, B. D., A virtual element method for contact, Comput. Mech.58 (2016) 1039-1050. · Zbl 1398.74420
[30] Wriggers, P., Rust, W. T., Reddy, B. D. and Hudobivnik, B., Efficient virtual element formulations for compressible and incompressible finite deformations, Comput. Mech.60 (2017) 253-268. · Zbl 1386.74146
[31] Zhao, J., Chen, S. and Zhang, B., The nonconforming virtual element method for plate bending problems, Math. Models Methods Appl. Sci.26 (2016) 1671-1687. · Zbl 1396.74098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.