×

Variational nonlinear WKB in the Eulerian frame. (English) Zbl 1445.76059

Summary: Nonlinear WKB is a multiscale technique for studying locally plane-wave solutions of nonlinear partial differential equations (PDEs). Its application comprises two steps: (1) replacement of the original PDE with an extended system separating the large scales from the small and (2) reduction of the extended system to its slow manifold. In the context of variational fluid theories with particle relabeling symmetry, nonlinear WKB in the mean Eulerian frame is known to possess a variational structure. This much has been demonstrated using, for instance, the theoretical apparatus known as the generalized Lagrangian mean. On the other hand, the variational structure of nonlinear WKB in the conventional Eulerian frame remains mysterious. By exhibiting a variational principle for the extended equations from step (1) above, we demonstrate that nonlinear WKB in the Eulerian frame is in fact variational. Remarkably, the variational principle for the extended system admits loops of relabeling transformations as a symmetry group. Noether’s theorem therefore implies that the extended Eulerian equations possess a family of circulation invariants parameterized by \(S^1\). As an illustrative example, we use our results to systematically deduce a variational model of high-frequency acoustic waves interacting with a larger-scale compressible isothermal flow.
©2020 American Institute of Physics

MSC:

76M30 Variational methods applied to problems in fluid mechanics
76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics
76Q05 Hydro- and aero-acoustics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Whitham, G. B., Non-linear dispersive waves, Proc. R. Soc. London, Ser. A, 283, 238 (1965) · Zbl 0125.44202 · doi:10.1098/rspa.1965.0019
[2] Miura, R. M.; Kruskal, M. D., Application of a non linear WKB method to the Korteweg-DeVries equation, SIAM J. Appl. Math., 26, 376 (1974) · Zbl 0273.35055 · doi:10.1137/0126036
[3] Holm, D. D.; Marsden, J. E.; Ratiu, T. S., The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137, 1 (1998) · Zbl 0951.37020 · doi:10.1006/aima.1998.1721
[4] Whitham, G. B., A general approach to linear and non-linear dispersive waves using a Lagrangian, J. Fluid Mech., 22, 273 (1965) · Zbl 1467.35244 · doi:10.1017/s0022112065000745
[5] Strictly speaking, this variational principle is not the standard Euler-Poincaré variational principle because (a) it does not involve constrained variations and (b) the Lagrangian configuration is regarded as a diffeomorphism Q_0 → Q instead of a diffeomorphism Q → Q. However, equivalence is readily established after fixing an arbitrary identifying diffeomorphism Q ≈ Q_0 and then applying the standard Euler-Poincaré reduction procedure.
[6] Dewar, R. L., Interaction between hydromagnetic waves and a time-dependent inhomogeneous medium, Phys. Fluids, 13, 2710 (1970) · Zbl 0233.76216 · doi:10.1063/1.1692854
[7] Bretherton, F. P., The general linearised theory of wave propagation, Mathematical Problems in the Geophysical Sciences, 61-102 (1971), American Mathematical Society · Zbl 0227.76002
[8] Newcomb, W. A., Nucl. Fusion Suppl. Pt., 2, 451 (1962) · Zbl 0115.45506
[9] Gjaja, I.; Holm, D. D., Self-consistent Hamiltonian dynamics of wave mean-flow interaction for a rotating stratified incompressible fluid, Physica D, 98, 343 (1996) · Zbl 0900.76718 · doi:10.1016/0167-2789(96)00104-2
[10] Pressley, A.; Segal, G., Loop Groups (1988), Clarendon Press · Zbl 0638.22009
[11] Holm, D. D.; Marsden, J. E.; Ratiu, T. S., The Hamiltonian structure of continuum mechanics in material, inverse material, spatial and convective representations, Hamiltonian Structure and Lyapunov Stability for Ideal Continuum Dynamics, 11-124 (1986), Presses Univ. Montréal · Zbl 0611.70015
[12] Cotter, C. J.; Holm, D. D., On Noether’s Theorem for the Euler-Poincaré equation on the diffeomorphism group with advected quantities, Found. Comput. Math., 13, 457 (2012) · Zbl 1352.37173 · doi:10.1007/s10208-012-9126-8
[13] Bretherton, F. P., A note on Hamilton’s principle for perfect fluids, J. Fluid Mech., 44, 19 (1970) · Zbl 0198.58901 · doi:10.1017/s0022112070001660
[14] Marsden, J. E.; Weinstein, A., Physica D, 4, 394 (1982) · Zbl 1194.35463 · doi:10.1016/0167-2789(82)90043-4
[15] Fenichel, N., Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equations, 31, 53-98 (1979) · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[16] Verhulst, F., Methods and Applications of Singular Perturbations (2005), Springer-Verlag: Springer-Verlag, New York · Zbl 1148.35006
[17] MacKay, R. S., Slow Manifolds, Energy Localisation and Transfer, 149-192 (2004), World Scientific · Zbl 1090.82017
[18] Andrews, D. G.; McIntyre, M. E., An exact theory of nonlinear waves on a Lagrangian-mean flow, J. Fluid Mech., 89, 609-646 (1978) · Zbl 0426.76025 · doi:10.1017/s0022112078002773
[19] Holm, D. D., Averaged Lagrangians and the mean effects of fluctuations in ideal fluid dynamics, Physica D, 170, 253-286 (2002) · Zbl 1098.76547 · doi:10.1016/s0167-2789(02)00552-3
[20] Holm, D. D., Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics, Chaos, 12, 518-530 (2002) · Zbl 1080.76504 · doi:10.1063/1.1460941
[21] Holm, D. D., Variational principles for Lagrangian-averaged fluid dynamics, J. Phys. A: Math. Gen., 35, 679-688 (2002) · Zbl 1040.76054 · doi:10.1088/0305-4470/35/3/313
[22] Bühler, O., Waves and Mean Flows (2009), Cambridge University Press · Zbl 1180.86001
[23] Dewar, R. L., Oscillation center quasilinear theory, Phys. Fluids, 16, 1102-1107 (1973) · doi:10.1063/1.1694473
[24] Beig, R.; Schmidt, B. G., Relativistic elasticity, Classical Quantum Gravity, 20, 889 (2003) · Zbl 1027.83017 · doi:10.1088/0264-9381/20/5/308
[25] Burby, J. W., Magnetohydrodynamic motion of a two-fluid plasma, Phys. Plasmas, 24, 082104 (2017) · doi:10.1063/1.4994068
[26] Burby, J. W.; Sengupta, W., Hamiltonian structure of the guiding center plasma model, Phys. Plasmas, 25, 020703 (2018) · doi:10.1063/1.5016453
[27] Burby, J. W.; Brizard, A. J.; Morrison, P. J.; Qin, H., Hamiltonian gyrokinetic vlasov-maxwell system, Phys. Lett. A, 379, 2073 (2015) · Zbl 1364.82053 · doi:10.1016/j.physleta.2015.06.051
[28] Brizard, A. J.; Tronci, C., Variational formulations of guiding-center vlasov-maxwell theory, Phys. Plasmas, 23, 062107 (2016) · doi:10.1063/1.4953431
[29] Littlejohn, R. G.; Flynn, W. G., Geometric phases in the asymptotic theory of coupled wave equations, Phys. Rev. A, 44, 5239 (1991) · doi:10.1103/physreva.44.5239
[30] Ruiz, D. E.; Dodin, I. Y., Extending geometrical optics: A Lagrangian theory for vector waves, Phys. Plasmas, 24, 055704 (2017) · doi:10.1063/1.4977537
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.