zbMATH — the first resource for mathematics

Extracting maximum information from polarised baryon decays via amplitude analysis: the \(\Lambda_c^+\longrightarrow p K^- \pi^+\) case. (English) Zbl 1445.81067
Summary: We consider what is the maximum information measurable from the decay distributions of polarised baryon decays via amplitude analysis in the helicity formalism. We focus in particular on the analytical study of the \(\Lambda_c^+\longrightarrow p K^- \pi^+\) decay distributions, demonstrating that the full information on its decay amplitudes can be extracted from its distributions, allowing a simultaneous measurement of both helicity amplitudes and the polarisation vector. This opens the possibility to use the \(\Lambda_c^+\longrightarrow p K^- \pi^+\) decay for applications ranging from New Physics searches to low-energy QCD studies, in particular its use as absolute polarimeter for the \(\Lambda_c^+\) baryon. This result is valid as well for baryon decays having the same spin structure, and it is cross-checked numerically by means of a toy amplitude fit with Monte Carlo pseudodata.
81U90 Particle decays
81V05 Strong interaction, including quantum chromodynamics
MINUIT; ROOT; TensorFlow
PDF BibTeX Cite
Full Text: DOI
[1] Marangotto, D., Amplitude analysis and polarisation measurement of the \(\Lambda_c^+\) baryon in \(p K^- \pi^+\) final state for electromagnetic dipole moment experiment, [Ph.D. thesis] (2020), Universit degli studi di Milano, https://cds.cern.ch/record/2713231
[2] Dutta, R., \( \Lambda_b\longrightarrow\left( \Lambda_c , p\right)\tauv\) decays within standard model and beyond, Physical Review D, 93, 5, article 054003 (2016)
[3] Shivashankara, S.; Wu, W.; Datta, A., \( \Lambda_b\longrightarrow \Lambda_c\tau \overline{v}_\tau\) decay in the standard model and with new physics, Physical Review D, 91, 11, article 115003 (2015)
[4] Li, X.-Q.; Yang, Y.-D.; Zhang, X., \( \Lambda_b\longrightarrow \Lambda_c\tau \overline{v}_\tau\) decay in scalar and vector leptoquark scenarios, Journal of High Energy Physics, 2017, 2, article 68 (2017)
[5] Datta, A.; Kamali, S.; Meinel, S.; Rashed, A., Phenomenology of \(\Lambda_b\longrightarrow \Lambda_c\tau \overline{v}_\tau\) using lattice QCD calculations, Journal of High Energy Physics, 2017, 8 (2017)
[6] Di Salvo, E.; Fontanelli, F.; Ajaltouni, Z. J., Detailed study of the decay \(\Lambda_b\longrightarrow \Lambda_c\tau \overline{v}_\tau (2018)\), https://arxiv.org/abs/1804.05592
[7] Ray, A.; Sahoo, S.; Mohanta, R., Probing new physics in semileptonic \(\Lambda_b\) decays, Physical Review D, 99, 1, article 015015 (2019)
[8] Böer, P.; Kokulu, A.; Toelstede, J.-N.; van Dyk, D., Angular Analysis of \(\Lambda_b\left( \longrightarrow \Lambda \pi\right)\ell\overline{v} \), Journal of High Energy Physics, 2019, article 82 (2019)
[9] Pefinalva, N.; HernÆndez, E.; Nieves, J., Further tests of lepton avour universality from the charged lepton energy distribution in \(b\longrightarrowc\) semileptonic decays: The case of \(\Lambda_b\longrightarrow \Lambda_c\ell \overline{v}_\ell \), https://arxiv.org/abs/1908.02328
[10] Mannel, T.; Schuler, G. A., Semileptonic decays of bottom baryons at LEP, Physics Letters B, 279, 194 (1992)
[11] Falk, A. F.; Peskin, M. E., Production, decay, and polarization of excited heavy hadrons, Physical Review D, 49, 7, 3320-3332 (1994)
[12] Galanti, M.; Giammanco, A.; Grossman, Y.; Kats, Y.; Stamou, E.; Zupan, J., Heavy baryons as polarimeters at colliders, Journal of High Energy Physics, 2015, 11 (2015)
[13] Particle Data Group, Review of particle physics, Physical Review D, 98, article 030001 (2018)
[14] Botella, F. J.; Garcia Martin, L. M.; Marangotto, D.; Martinez Vidal, F.; Merli, A.; Neri, N.; Oyanguren, A.; Ruiz Vidal, J., On the search for the electric dipole moment of strange and charm baryons at LHC, The European Physical Journal C, 77, 3, article 181 (2017)
[15] Bagli, E.; Bandiera, L.; Cavoto, G.; Guidi, V.; Henry, L.; Marangotto, D.; Martinez Vidal, F.; Mazzolari, A.; Merli, A.; Neri, N.; Ruiz Vidal, J., Electromagnetic dipole moments of charged baryons with bent crystals at the LHC, The European Physical Journal C, 77, 12, article 828 (2017)
[16] Aitala, E. M.; Amato, S.; Anjos, J. C.; Appel, J. A.; Ashery, D.; Banerjee, S.; Bediaga, I.; Blaylock, G.; Bracker, S. B.; Burchat, P. R.; Burnstein, R. A.; Carter, T.; Carvalho, H. S.; Copty, N. K.; Cremaldi, L. M.; Darling, C.; Denisenko, K.; Devmal, S.; Fernandez, A.; Fox, G. F.; Gagnon, P.; Gobel, C.; Gounder, K.; Halling, A. M.; Herrera, G.; Hurvits, G.; James, C.; Kasper, P. A.; Kwan, S.; Langs, D. C.; Leslie, J.; Lundberg, B.; Magnin, J.; MayTal-Beck, S.; Meadows, B.; de Mello Neto, J. R. T.; Mihalcea, D.; Milburn, R. H.; de Miranda, J. M.; Napier, A.; Nguyen, A.; d’Oliveira, A. B.; O’Shaughnessy, K.; Peng, K. C.; Perera, L. P.; Purohit, M. V.; Quinn, B.; Radeztsky, S.; Rafatian, A.; Reay, N. W.; Reidy, J. J.; dos Reis, A. C.; Rubin, H. A.; Sanders, D. A.; Santha, A. K. S.; Santoro, A. F. S.; Schwartz, A. J.; Sheaff, M.; Sidwell, R. A.; Slaughter, A. J.; Sokoloff, M. D.; Solano, J.; Stanton, N. R.; Stefanski, R. J.; Stenson, K.; Summers, D. J.; Takach, S.; Thorne, K.; Tripathi, A. K.; Watanabe, S.; Weiss-Babai, R.; Wiener, J.; Witchey, N.; Wolin, E.; Yang, S. M.; Yi, D.; Yoshida, S.; Zaliznyak, R.; Zhang, C., Multidimensional resonance analysis of \(\Lambda c^+\longrightarrow p K^- \pi^+\), Physics Letters B, 471, 4, 449-459 (2000)
[17] Korner, J. G.; Kramer, M., Exclusive nonleptonic charm baryon decays, Zeitschrift für Physik, 55, 659 (1992)
[18] Bialas, P.; Körner, J. G.; Krämer, M.; Zalewski, K., Joint angular decay distributions in exclusive weak decays of heavy mesons and baryons, Zeitschrift für Physik C Particles and Fields, 57, 1, 115-134 (1993)
[19] König, B.; Körner, J. G.; Krämer, M., On the determination of the \(b\longrightarrowc\) handedness using nonleptonic \(\Lambda_c\) decays, Physical Review D, 49, 2363-2368 (1994)
[20] König, B.; Körner, J. G.; Krämer, M.; Kroll, P., In nite momentum frame calculation of semileptonic heavy \(\Lambda_b\longrightarrow \Lambda_c\) transitions including HQET improvements, Physical Review D, 56, 4282-4294 (1997)
[21] Cen, J.-Y.; Geng, C.-Q.; Liu, C.-W.; Tsai, T.-H., Up-down asymmetries of charmed baryon three-body decays, The European Physical Journal C, 79, 11 (2019)
[22] Leader, E., Spin in particle physics, Cambridge Monographs on Particle Physics Nuclear Physics and Cosmology, 15 (2011), Cambridge University Press
[23] Marangotto, D., Helicity formalism revisited for polarised particle decays, https://arxiv.org/abs/1911.10025
[24] Jacob, M.; Wick, G. C., On the general theory of collisions for particles with spin, Annals of Physics, 7, 4, 404-428 (1959) · Zbl 0178.28304
[25] Richman, J. D., An experimenter’s guide to the helicity formalism, CALT-68-1148
[26] Mikhasenko, M.; Albaladejo, M.; Bibrzycki, Ł.; Fernández-Ramírez, C.; Mathieu, V.; Mitchell, S.; Pappagallo, M.; Pilloni, A.; Winney, D.; Skwarnicki, T.; Szczepaniak, A. P., Dalitz-plot decomposition for three-body decays, Physical Review D, 101, 3, article 034033 (2020)
[27] Gourgoulhon, E., Special Relativity in General Frames (2013), Springer · Zbl 1281.83001
[28] Breit, G.; Wigner, E., Capture of slow neutrons, Physical Review, 49, 7, 519-531 (1936) · Zbl 0013.42801
[29] TensorFlowAnalysis: A collection of useful functions and example scripts for performing amplitude fits using TensorFlow, https://gitlab.cern.ch/poluekt/TensorFlowAnalysis
[30] Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Levenberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng, X., TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (2015), https://www.tensorflow.org
[31] James, F.; Roos, M., Minuit: a system for function minimization and analysis of the parameter errors and correlations, Computer Physics Communications, 10, 6, 343-367 (1975)
[32] Brun, R.; Rademakers, F., ROOT: an object oriented data analysis framework, Nuclear Instruments and Methods in Physics Research A, 389, 81-86 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.