×

zbMATH — the first resource for mathematics

Numerical simulation of wave propagation in 3D elastic media with viscoelastic formations. (English) Zbl 1445.86001
Summary: Attenuation is widespread in the Earth’s interior. However, there are several models where viscoelastic formations comprise as few as 10 to 20 % of the volume. They include near-surface and sea-bottom formation due to the low consolidation of the sediments, oil and gas reservoirs due to fluid saturation, etc. At the same time, the major part of the medium is ideally elastic. In this situation, the use of computationally intense approaches for the viscoelastic materials throughout the computational domain is prodigal. So this paper presents an original finite-difference algorithm based on the domain decomposition technique with the individual scheme used inside subdomains. It means that the standard staggered grid scheme approximating the ideally elastic model is used in the main part of the model. In contrast, the attenuation-oriented scheme is utilized inside viscoelastic domains. As the real-size simulations are applied in parallel via domain decomposition technique, this means that the elementary domains assigned to a single core (node) should be different for elastic and viscoelastic parts of the model. The optimal domain decomposition technique minimizing the computational time (core-hours) is suggested in the paper. It is proved analytically and confirmed numerically that for the models with up to 25% of viscoelasticity, the speed-up of the hybrid algorithm is about 1.7 in comparison with purely viscoelastic simulation.
MSC:
86-08 Computational methods for problems pertaining to geophysics
74S20 Finite difference methods applied to problems in solid mechanics
74J15 Surface waves in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Appelo, D.; Petersson, N. A., A stable finite difference method for the elastic wave equation on complex geometries with free surfaces, Commun. Comput. Phys., 5, 84-107 (2009) · Zbl 1364.74016
[2] Asvadurov, S.; Druskin, V.; Guddati, M.; Knizhnerman, L., On optimal finite-difference approximation of PML, SAIM J. Numer. Anal., 41, 287-305 (2003) · Zbl 1047.65063
[3] Asvadurov, S.; Knizhnerman, L.; Pabon, J., Finite-difference modeling of viscoelastic materials with quality factors of arbitrary magnitude, Geophysics, 69, 817-824 (2004)
[4] Baldassari, C.; Barucq, H.; Calandra, H.; Diaz, J., Numerical performances of a hybrid local-time stepping strategy applied to the reverse time migration, Geophys. Prospect., 59, 907-919 (2011)
[5] Blanch, J.; Robertsson, J.; Symes, W., Modeling of a constant Q: Methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique, Geophysics, 60, 176-184 (1995)
[6] Bohlen, T., Parallel 3-D viscoelastic finite difference seismic modelling, Comput. Geosci., 28, 887-899 (2002)
[7] Brossier, R.; Operto, S.; Virieux, J., Seismic imaging of complex onshore structures by 2D elastic frequency-domain fullwaveform inversion, Geophysics, 74, WCC63-WCC76 (2009)
[8] Carcione, J. M., Seismic modeling in viscoelastic media, Geophysics, 58, 110-120 (1993)
[9] Carcione, J. M., Constitutive model and wave equations for linear, viscoelastic, anisotropic media, Geophysics, 60, 537-548 (1995)
[10] Carcione, J. M.; Cavallini, F., A rheological model for anelastic anisotropic media with applications to seismic wave propagation, Geophys. J. Int., 119, 338-348 (1994)
[11] Carcione, J. M.; Gei, D., Theory and numerical simulation of fluid-pressure diffusion in anisotropic porous media, Geophysics, 74, 39 (2009)
[12] Carcione, J. M.; Kosloff, D.; Kosloff, R., Wave propagation simulation in a linear viscoelastic medium, Geophys. J. Int., 95, 597-611 (1988) · Zbl 0659.73031
[13] J. M. Carcione, C. Morency, and J. E. Santos, ‘‘Computational poroelasticity – a review,’’ Geophysics 75, 75A229-75A243 (2010).
[14] Christensen, R. M., Theory of Viscoelasticity, an Introduction (1971), New York, London: Academic, New York, London
[15] Dong, Z.; McMechan, G. A., 3-D viscoelastic anisotropic modeling of data from a multicomponent, multiazimuth seismic experiment in northeast Texas, Geophysics, 60, 1128-1138 (1995)
[16] Drossaert, F. H.; Giannopoulos, A., A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves, Geophysics, 72, T9-T17 (2007)
[17] Duveneck, E.; Bakker, P. M., Stable P-wave modeling for reverse-time migration in tilted TI media, Geophysics, 76, S65-S75 (2011)
[18] Engquist, B.; Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31, 629-651 (1977) · Zbl 0367.65051
[19] Etienne, V.; Chaljub, E.; Virieux, J.; Glinsky, N., An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, Geophys, J. Int., 183, 941-962 (2010)
[20] Hagstrom, T.; Lau, S., Radiation boundary conditions for Maxwell’s equations: A review of accurate time-domain formulations, J. Comput. Math., 25, 305-336 (2007)
[21] Hestholm, S.; Ruud, B., 3D free-boundary conditions for coordinate-transform finite-difference seismic modelling, Geophys. Prospect., 50, 463-474 (2002)
[22] Kostin, V.; Lisitsa, V.; Reshetova, G.; Tcheverda, V., Local time-space mesh refinement for simulation of elastic wave propagation in multi-scale media, J. Comput. Phys., 281, 669-689 (2015) · Zbl 1351.74047
[23] Kristek, J.; Moczo, P.; Galis, M., Stable discontinuous staggered grid in the finite-difference modelling of seismic motion, Geophys. J. Int., 183, 1401-1407 (2010)
[24] Kwok, F., Optimized additive Schwarz with harmonic extension as a discretization of the continuous parallel Schwarz method, SIAM J. Numer. Anal., 49, 1289-1316 (2011) · Zbl 1263.65128
[25] Levander, A. R., Fourth-order finite-difference P-SV seismograms, Geophysics, 53, 1425-1436 (1988)
[26] Lisitsa, V., Optimal discretization of PML for elasticity problems, Electron. Trans. Numer. Anal., 30, 258-277 (2008) · Zbl 1170.74052
[27] Lisitsa, V.; Reshetova, G.; Tcheverda, V., Finite-difference algorithm with local time-space grid refinement for simulation of waves, Comput. Geosci., 16, 39-54 (2012) · Zbl 1253.76078
[28] Lisitsa, V.; Tcheverda, V.; Botter, C., Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation, J. Comput. Phys., 311, 142-157 (2016) · Zbl 1349.86007
[29] Lisitsa, V.; Tcheverda, V.; Vishnevsky, D., Numerical simulation of seismic waves in models with anisotropic formations: Coupling Virieux and Lebedev finite-difference schemes, Comput. Geosci., 16, 1135-1152 (2012)
[30] Lisitsa, V.; Vishnevskiy, D., Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity, Geophys. Prospect., 58, 619-635 (2010)
[31] Martin, R.; Komatitsch, D.; Ezziani, A., An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media, Geophysics, 73, T51-T61 (2008)
[32] Moczo, P.; Bystricky, E.; Kristek, J.; Carcione, J. M.; Bouchon, M., Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures, Bull. Seismol. Soc. Am., 87, 1305-1323 (1997)
[33] Pleshkevich, A.; Vishnevskiy, D.; Lisitsa, V., Sixth-order accurate pseudo-spectral method for solving one-way wave equation, Appl. Math. Comput., 359, 34-51 (2019) · Zbl 1429.65286
[34] Pleshkevich, A. L.; Lisitsa, V. V.; Vishnevsky, D. M.; Levchenko, V. D.; Moroz, B. M., Parallel GPU-based implementation of one-way wave equation migration, Supercomput. Front. Innov., 5, 34-37 (2018)
[35] Rasolofosaon, P. N., Generalized anisotropy parameters and approximations of attenuations and velocities in viscoelastic media of arbitrary anisotropy type; theoretical and experimental aspects, Geophys. Prospect., 58, 637-655 (2010)
[36] Saenger, E. H.; Gold, N.; Shapiro, S. A., Modeling the propagation of the elastic waves using a modified finite-difference grid, Wave Motion, 31, 77-92 (2000) · Zbl 1074.74648
[37] Suh, S. Y.; Yeh, A.; Wang, B.; Cai, J.; Yoon, K.; Li, Z., Cluster programming for reverse time migration, The Leading Edge, 29, 94-97 (2010)
[38] Tarrass, I.; Giraud, L.; Thore, P., New curvilinear scheme for elastic wave propagation in presence of curved topography, Geophys. Prospect., 59, 889-906 (2011)
[39] Vavrycuk, V., Velocity, attenuation, and quality factor in anisotropic viscoelastic media: A perturbation approach, Geophysics, 73, D63-D73 (2008)
[40] Virieux, J., P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, 51, 889-901 (1986)
[41] Virieux, J.; Calandra, H.; Plessix, R.-E., A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging, Geophys. Prospect., 59, 794-813 (2011)
[42] Virieux, J.; Operto, S.; Ben-Hadj-Ali, H.; Brossier, R.; Etienne, V.; Sourbier, F.; Giraud, L.; Haidar, A., Seismic wave modeling for seismic imaging, The Leading Edge, 28, 538-544 (2009)
[43] White, R. E., The accuracy of estimating Q from seismic data, Geophysics, 57, 1508-1511 (1992)
[44] Zhang, D.; Lamoureux, M.; Margrave, G.; Cherkaev, E., Rational approximation for estimation of quality Q factor and phase velocity in linear, viscoelastic, isotropic media, Comput. Geosci., 15, 117-133 (2011) · Zbl 1209.86008
[45] Zhu, Y.; Tsvankin, I., Plane-wave propagation in attenuative transversely isotropic media, Geophysics, 71, T17-T30 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.