zbMATH — the first resource for mathematics

Entropy stable numerical approximations for the isothermal and polytropic Euler equations. (English) Zbl 1446.65134
Summary: In this work we analyze the entropic properties of the Euler equations when the system is closed with the assumption of a polytropic gas. In this case, the pressure solely depends upon the density of the fluid and the energy equation is not necessary anymore as the mass conservation and momentum conservation then form a closed system. Further, the total energy acts as a convex mathematical entropy function for the polytropic Euler equations. The polytropic equation of state gives the pressure as a scaled power law of the density in terms of the adiabatic index \(\gamma \). As such, there are important limiting cases contained within the polytropic model like the isothermal Euler equations \(( \gamma=1)\) and the shallow water equations \(( \gamma=2)\). We first mimic the continuous entropy analysis on the discrete level in a finite volume context to get special numerical flux functions. Next, these numerical fluxes are incorporated into a particular discontinuous Galerkin (DG) spectral element framework where derivatives are approximated with summation-by-parts operators. This guarantees a high-order accurate DG numerical approximation to the polytropic Euler equations that is also consistent to its auxiliary total energy behavior. Numerical examples are provided to verify the theoretical derivations, i.e., the entropic properties of the high order DG scheme.
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L35 Initial-boundary value problems for higher-order hyperbolic equations
35L60 First-order nonlinear hyperbolic equations
35Q31 Euler equations
HE-E1GODF; Maxima
Full Text: DOI
[1] Abgrall, R.; Roe, PL, High order fluctuation schemes on triangular meshes, J. Sci. Comput., 19, 1-3, 3-36 (2003) · Zbl 1068.65133
[2] Barth, TJ; Kröner, D.; Ohlberger, M.; Rohde, C., Numerical methods for gasdynamic systems on unstructured meshes, An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Lecture Notes in Computational Science and Engineering, 195-285 (1999), Berlin: Springer, Berlin · Zbl 0969.76040
[3] Bohm, M.; Winters, AR; Gassner, GJ; Derigs, D.; Hindenlang, F.; Saur, J., An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: theory and numerical verification, J. Comput Phys. (2018)
[4] Canuto, C.; Hussaini, M.; Quarteroni, A.; Zang, T., Spectral Methods: Fundamentals in Single Domains (2006), Berlin: Springer, Berlin · Zbl 1093.76002
[5] Carpenter, M.; Fisher, T.; Nielsen, E.; Frankel, S., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, 5, B835-B867 (2014) · Zbl 1457.65140
[6] Carpenter, M., Kennedy, C.: Fourth-order \(2{N}\)-storage Runge-Kutta schemes. Technical Report NASA TM 109111, NASA Langley Research Center (1994)
[7] Cengel, Y.; Boles, M., Thermodynamics: An Engineering Approach (2014), New York: McGraw-Hill Education, New York
[8] Chan, J., On discretely entropy conservative and entropy stable discontinuous Galerkin methods, J. Comput. Phys., 362, 346-374 (2018) · Zbl 1391.76310
[9] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14, 1252-1286 (2013) · Zbl 1373.76121
[10] Chen, G.Q.: Euler equations and related hyperbolic conservation laws. In: Handbook of Differential Equations: Evolutionary Equations, vol. 2, pp. 1-104 (2005) · Zbl 1092.35062
[11] Chen, T.; Shu, CW, Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., 345, 427-461 (2017) · Zbl 1380.65253
[12] Courant, R.; Friedrichs, K.; Lewy, H., On partial differential equations of mathematical physics, IBM J. Res. Dev., 11, 215-234 (1967) · Zbl 0145.40402
[13] Crean, J.; Hicken, JE; Fernández, DCDR; Zingg, DW; Carpenter, MH, Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements, J. Comput. Phys., 356, 410-438 (2018) · Zbl 1380.76080
[14] Derigs, D.; Winters, AR; Gassner, GJ; Walch, S., A novel averaging technique for discrete entropy stable dissipation operators for ideal MHD, J. Comput. Phys., 330, 624-632 (2016) · Zbl 1378.76131
[15] Evans, LC, Partial Differential Equations (2012), Providence: American Mathematical Society, Providence
[16] Fisher, TC; Carpenter, MH, High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293
[17] Fisher, TC; Carpenter, MH; Nordström, J.; Yamaleev, NK; Swanson, C., Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions, J. Comput. Phys., 234, 353-375 (2013) · Zbl 1284.65102
[18] Fjordholm, US; Mishra, S.; Tadmor, E., Well-blanaced and energy stable schemes for the shallow water equations with discontiuous topography, J. Comput. Phys., 230, 14, 5587-5609 (2011) · Zbl 1452.35149
[19] Fjordholm, US; Mishra, S.; Tadmor, E., Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM J. Numer. Anal., 50, 2, 544-573 (2012) · Zbl 1252.65150
[20] Fjordholm, US; Ray, D., A sign preserving WENO reconstruction method, J. Sci. Comput., 68, 1, 42-63 (2016) · Zbl 1344.65079
[21] Friedrich, L.; Winters, AR; Fernández, DCDR; Gassner, GJ; Parsani, M.; Carpenter, MH, An entropy stable \(h/p\) non-conforming discontinuous Galerkin method with the summation-by-parts property, J. Sci. Comput., 77, 2, 689-725 (2018) · Zbl 1407.65185
[22] Gassner, G., Hindenlang, F., Munz, C.: A Runge-Kutta based discontinuous Galerkin method with time accurate local time stepping. In: Adaptive High-Order Methods in Computational Fluid Dynamics, vol. 2, pp. 95-118 (2011) · Zbl 1358.76040
[23] Gassner, GJ, A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, 3, A1233-A1253 (2013) · Zbl 1275.65065
[24] Gassner, GJ; Winters, AR; Hindenlang, FJ; Kopriva, DA, The BR1 scheme is stable for the compressible Navier-Stokes equations, J. Sci. Comput., 77, 1, 154-200 (2017)
[25] Gassner, GJ; Winters, AR; Kopriva, DA, Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys., 327, 39-66 (2016) · Zbl 1422.65280
[26] Harten, A., On the symmetric form of systems of conservation laws with entropy, J. Comput. Phys., 49, 151-164 (1983) · Zbl 0503.76088
[27] Hindenlang, F.J., Gassner, G.J.: On the order reduction of entropy stable DGSEM for the compressible Euler equations. arXiv preprint arXiv:1901.05812 (2019)
[28] Ismail, F.; Roe, PL, Affordable, entropy-consistent Euler flux functions II: entropy production at shocks, J. Comput. Phys., 228, 15, 5410-5436 (2009) · Zbl 1280.76015
[29] Kopriva, DA, Implementing Spectral Methods for Partial Differential Equations. Scientific Computation (2009), Berlin: Springer, Berlin
[30] Kundu, PK; Cohen, IM; Dowling, DW, Fluid Mechanics (2008), Oxford: Elsevier, Oxford
[31] Kuya, Y.; Totani, K.; Kawai, S., Kinetic energy and entropy preserving schemes for compressible flows by split convective forms, J. Comput. Phys., 375, 823-853 (2018) · Zbl 1416.76182
[32] LeFloch, PG; Mercier, JM; Rohde, C., Fully discrete, entropy conservative schemes of arbitraryorder, SIAM J. Numer. Anal., 40, 5, 1968-1992 (2002) · Zbl 1033.65073
[33] LeVeque, RJ, Finite Volume Methods for Hyperbolic Problems (2002), Cambridge: Cambridge University Press, Cambridge
[34] Maxima: Maxima, a computer algebra system. version 5.42.2 (2019). http://maxima.sourceforge.net/
[35] Mock, MS, Systems of conservation laws of mixed type, J. Differ. Equ., 37, 1, 70-88 (1980) · Zbl 0413.34017
[36] Ray, D.; Chandrashekar, P.; Fjordholm, US; Mishra, S., Entropy stable scheme on two-dimensional unstructured grids for Euler equations, Commun. Comput. Phys., 19, 5, 1111-1140 (2016) · Zbl 1373.76143
[37] Serre, D., Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves (1999), Cambridge: Cambridge University Press, Cambridge
[38] Stolarsky, KB, Generalizations of the logarithmic mean, Math. Mag., 48, 2, 87-92 (1975) · Zbl 0302.26003
[39] Stolarsky, KB, The power and generalized logarithmic means, Am. Math. Mon., 87, 7, 545-548 (1980) · Zbl 0455.26008
[40] Svärd, M.; Nordström, J., Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268, 17-38 (2014) · Zbl 1349.65336
[41] Tadmor, E., Skew-selfadjoint form for systems of conservation laws, J. Math. Anal. Appl., 103, 2, 428-442 (1984) · Zbl 0599.35102
[42] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws, Math. Comput., 49, 179, 91-103 (1987) · Zbl 0641.65068
[43] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12, 451-512 (2003) · Zbl 1046.65078
[44] Toro, EF, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2009), Berlin: Springer, Berlin
[45] Whitham, GB, Linear and Nonlinear Waves (1974), New York: Wiley, New York
[46] Wintermeyer, N.; Winters, AR; Gassner, GJ; Kopriva, DA, An entropy stable discontinuous Galerkin method for the two dimensional shallow water equations with discontinuous bathymetry, J. Comput. Phys., 340, 200-242 (2017) · Zbl 1380.65291
[47] Winters, AR; Derigs, D.; Gassner, GJ; Walch, S., A uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations, J. Comput. Phys., 332, 274-289 (2017) · Zbl 1378.76144
[48] Winters, AR; Gassner, GJ, Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys., 304, 72-108 (2016) · Zbl 1349.76407
[49] Winters, AR; Moura, RC; Mengaldo, G.; Gassner, GJ; Walch, S.; Peiro, J.; Sherwin, SJ, A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations, J. Comput. Phys., 372, 1-21 (2018) · Zbl 1415.76461
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.