×

Hemodynamic and mechanical aspects of fenestrated endografts for treatment of abdominal aortic aneurysm. (English) Zbl 1446.76190

Summary: Fenestrated endovascular aneurysm repair (f-EVAR) stent grafts offer an alternative treatment for conventional open heart surgery for patients with juxsta-renal Abdominal Aortic Aneurysms (AAA) that are unsuitable for the common infrarenal endovascular aneurysms repair (EVAR) procedure. The f-EVAR endograft includes branched stent grafts fixed to the aortic endograft main body via designated strengthened fenestrations. Repetitive stresses activated upon the endograft by the pulsatile flow might cause detachment or fracture of branching. Thus, investigation of the flow forces and stresses on the graft may help minimize complications and improve the endograft design. The present work investigates the flow and stress fields of the fenestrated endograft configuration using a fluid structure interaction (FSI) model in order to evaluate risks for graft fracture or detachments. The results show that the f-EVAR dramatically improves the aortic and iliac flow and that elevated cyclic stresses are found at the graft’s bifurcation and branches’ connections.

MSC:

76Z05 Physiological flows
76D07 Stokes and related (Oseen, etc.) flows
76M10 Finite element methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
92C10 Biomechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Desai, M.; Evans, J. E.; Hillery, C.; Bakhshi, R.; You, Z.; Lu, J.; Hamilton, G.; Seifalian, A., AAA stent grafts: past problems and future prospects, Annals of Biomedical Engineering, 38, 4, 1259-1275 (2010)
[2] Blum, U.; Voshage, G.; Lammer, J.; Beyersdorf, F.; Tollner, D.; Kretschmer, G.; Spillner, G.; Polterauer, P.; Nagel, G.; Holzenbein, T., Endoluminal stent-grafts for infrarenal abdominal aortic aneurysms, New England Journal of Medicine, 336, 1, 13 (1997)
[3] Prinssen, M.; Verhoeven, E. L.G.; Buth, J.; Cuypers, P. W.M.; van Sambeek, M. R.H. M.; Balm, R.; Buskens, E.; Grobbee, D. E.; Blankensteijn, J. D., A randomized trial comparing conventional and endovascular repair of abdominal aortic aneurysms, New England Journal of Medicine, 351, 16, 1607-1618 (2004)
[4] Lederle, F. A.; Freischlag, J. A.; Kyriakides, T. C.; Padberg, F. T.; Matsumura, J. S.; Kohler, T. R.; Lin, P. H.; Jean-Claude, J. M.; Cikrit, D. F.; Swanson, K. M., Outcomes following endovascular vs open repair of abdominal aortic aneurysm, JAMA: The Journal of the American Medical Association, 302, 14, 1535 (2009)
[5] De Bruin, J. L.; Baas, A. F.; Buth, J.; Prinssen, M.; Verhoeven, E. L.G.; Cuypers, P. W.M.; van Sambeek, M. R.H. M.; Balm, R.; Grobbee, D. E.; Blankensteijn, J. D., Long-term outcome of open or endovascular repair of abdominal aortic aneurysm, New England Journal of Medicine, 362, 20, 1881-1889 (2010)
[6] Carpenter, J. P.; Baum, R. A.; Barker, C. F.; Golden, M. A.; Mitchell, M. E.; Velazquez, O. C.; Fairman, R. M., Impact of exclusion criteria on patient selection for endovascular abdominal aortic aneurysm repair, Journal of Vascular Surgery, 34, 6, 1050-1054 (2001)
[7] Greenberg, R. K.; Haulon, S.; O’Neill, S.; Lyden, S.; Ouriel, K., Primary endovascular repair of juxtarenal aneurysms with fenestrated endovascular grafting* 1, European Journal of Vascular and Endovascular Surgery, 27, 5, 484-491 (2004)
[8] McWilliams, R. G., Current and future developments in the endovascular repair of aortic aneurysms, Controversies and Consensus in Imaging and Intervention, 5, 1, 11-15 (2007)
[9] Ziegler, P.; Avgerinos, E. D.; Umscheid, T.; Perdikides, T.; Stelter, W. J., Fenestrated endografting for aortic aneurysm repair: a 7 - year experience, Journal of Endovascular Therapy, 14, 5, 609-618 (2007)
[10] Nordon, I. M.; Hinchliffe, R. J.; Manning, B.; Ivancev, K.; Holt, P. J.; Loftus, I. M.; Thompson, M. M., Toward an off — the-shelf fenestrated endograft for management of short-necked abdominal aortic aneurysms: an analysis of current graft morphological diversity, Journal of Endovascular Therapy, 17, 1, 78-85 (2010)
[11] Haddad, Fenestrated endovascular grafting: the renal side of the story, Journal of Vascular Surgery, 41, 2, 181 (2005)
[12] Conway, B. D.; Greenberg, R. K.; Mastracci, T. M.; Hernandez, A. V.; Coscas, R., Renal artery implantation angles in thoracoabdominal aneurysms and their implications in the era of branched endografts, Journal of Endovascular Therapy, 17, 3, 380-387 (2010)
[13] Sun, Z.; Chaichana, T., Investigation of the hemodynamic effect of stent wires on renal arteries in patients with abdominal aortic aneurysms treated with suprarenal stent-grafts, Cardiovascular and Interventional Radiology, 32, 4, 647-657 (2009)
[14] Morris, L.; Delassus, P.; Walsh, M.; McGloughlin, T., A mathematical model to predict the in vivo pulsatile drag forces acting on bifurcated stent grafts used in endovascular treatment of abdominal aortic aneurysms (AAA), Journal of Biomechanics, 37, 7, 1087-1095 (2004)
[15] Figueroa, C. A.; Taylor, C. A.; Yeh, V.; Chiou, A. J.; Gorrepati, M. L.; Zarins, C. K., Preliminary 3D computational analysis of the relationship between aortic displacement force and direction of endograft movement, Journal of Vascular Surgery, 51, 6, 1488-1497 (2010)
[16] Sun, Z.; Chaichana, T., Fenestrated stent graft repair of abdominal aortic aneurysm: hemodynamic analysis of the effect of fenestrated stents on the renal arteries, Korean Journal of Radiology, 11, 1, 95-106 (2010)
[17] Xenos, M.; Bluestein, D., Biomechanical aspects of abdominal aortic aneurysm (AAA) and its risk of rupture: fluid structure interaction (FSI) studies, Biomechanics and Mechanobiology of Aneurysms, 181-220 (2011)
[18] Rissland, P.; Alemu, Y.; Einav, S.; Ricotta, J.; Bluestein, D., Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model, Journal of Biomechanical Engineering, 131, 031001 (2009)
[19] Rodriguez, J. F.; Martufi, G.; Doblar C., M.; Finol, E. A., The effect of material model formulation in the stress analysis of abdominal aortic aneurysms, Annals of Biomedical Engineering, 37, 11, 2218-2221 (2009)
[20] Howell, B. A.; Kim, T.; Cheer, A.; Dwyer, H.; Saloner, D.; Chuter, T. A.M., Computational fluid dynamics within bifurcated abdominal aortic stent-grafts, Journal of Endovascular Therapy, 14, 2, 138-143 (2007)
[21] Figueroa, C. A.; Taylor, C. A.; Yeh, V.; Chiou, A. J.; Zarins, C. K., Effect of curvature on displacement forces acting on aortic endografts: a 3-dimensional computational analysis, Journal of Endovascular Therapy, 16, 3, 284 (2009)
[22] Li, Z.; Kleinstreuer, C., Blood flow and structure interactions in a stented abdominal aortic aneurysm model, Medical Engineering & Physics, 27, 5, 369-382 (2005)
[23] Fung, Y. C., Biomechanics: Mechanical Properties of Living Tissues (1993), Springer
[24] De Keulenaer, B. L.; De Waele, J. J.; Powell, B.; Malbrain, M. L.N. G., What is normal intra-abdominal pressure and how is it affected by positioning, body mass and positive end-expiratory pressure?, Intensive Care Medicine, 35, 6, 969-976 (2009)
[25] Bathe, K. J., Finite Element Procedures (1996), Englewood Cliffs, NJ: Prentice Hall, 768
[26] Frauenfelder, T.; Lotfey, M.; Boehm, T.; Wildermuth, S., Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent graft implantation, Cardiovascular and Interventional Radiology, 29, 4, 613-623 (2006)
[27] R. Antón, C.-Y. Chen, M.-Y. Hung, E.A. Finol, K. Pekkan, Experimental and numerical analysis of the pressure field in a patient-specific AAA model with and without intraluminal thrombus, in: Cardiovascular Fluid Mechanics: from theoretical aspects to diagnostic and therapeutic support, EUROMECH 526, 2011, Cagliari, Italy.; R. Antón, C.-Y. Chen, M.-Y. Hung, E.A. Finol, K. Pekkan, Experimental and numerical analysis of the pressure field in a patient-specific AAA model with and without intraluminal thrombus, in: Cardiovascular Fluid Mechanics: from theoretical aspects to diagnostic and therapeutic support, EUROMECH 526, 2011, Cagliari, Italy.
[28] Zarins, C. K.; Taylor, C. A., Endovascular device design in the future: transformation from trial and error to computational design, Journal of Endovascular Therapy, 16, 12-21 (2009), (Suppl. I)
[29] Jones, J. E.; Atkins, M. D.; Brewster, D. C.; Chung, T. K.; Kwolek, C. J.; LaMuraglia, G. M.; Hodgman, T. M.; Cambria, R. P., Persistent type 2 endoleak after endovascular repair of abdominal aortic aneurysm is associated with adverse late outcomes, Journal of Vascular Surgery, 46, 1, 1-8 (2007)
[30] Sutalo, I. D.; Lawrence-Brown, M. M.D.; Ahmed, S.; Liffman, K.; Semmens, J. B., Modeling of antegrade and retrograde flow into a branch artery of the aorta: implications for endovascular stent-grafting and extra-anatomical visceral bypass, Journal of Endovascular Therapy, 15, 3, 300-309 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.