×

Topological qubit design and leakage. (English) Zbl 1448.81221

Summary: We examine how best to design qubits for use in topological quantum computation. These qubits are topological Hilbert spaces associated with small groups of anyons. Operations are performed on these by exchanging the anyons. One might argue that in order to have as many simple single-qubit operations as possible, the number of anyons per group should be maximized. However, we show that there is a maximal number of particles per qubit, namely 4, and more generally a maximal number of particles for qudits of dimension \(d\). We also look at the possibility of having topological qubits for which one can perform two-qubit gates without leakage into non-computational states. It turns out that the requirement that all two-qubit gates are leakage free is very restrictive and this property can only be realized for two-qubit systems related to Ising-like anyon models, which do not allow for universal quantum computation by braiding. Our results follow directly from the representation theory of braid groups, which implies that they are valid for all anyon models. We also make some remarks about generalizations to other exchange groups.

MSC:

81P68 Quantum computation
81P65 Quantum gates
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Kitaev A Yu 2003 Fault-tolerant quantum computation by anyons Ann. Phys.303 2 · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[2] Freedman M H 1998 P/NP and the quantum field computer Proc. Natl Acad. Sci. USA95 98-101 · Zbl 0895.68053 · doi:10.1073/pnas.95.1.98
[3] Freedman M H, Larsen M J and Wang Z 2002 A modular functor which is universal for quantum computation Commun. Math. Phys.227 605-22 · Zbl 1012.81007 · doi:10.1007/s002200200645
[4] Freedman M H, Larsen M J and Wang Z 2002 The two-eigenvalue problem and density of Jones representation of braid groups Commun. Math. Phys.228 177-99 · Zbl 1045.20027 · doi:10.1007/s002200200636
[5] Bonesteel N E, Hormozi L, Zikos G and Simon S H 2005 Braid topologies for quantum computation 2005 Phys. Rev. Lett.95 140503 · doi:10.1103/PhysRevLett.95.140503
[6] Hormozi L, Zikos G, Bonesteel N E and Simon S H 2007 Topological quantum compiling Phys. Rev. B 75 165310 · doi:10.1103/PhysRevB.75.165310
[7] Freedman M H, Kitaev A, Larsen M J and Wang Z 2003 Topological quantum computation Bull. Am. Math. Soc.40 31 · Zbl 1019.81008 · doi:10.1090/S0273-0979-02-00964-3
[8] Preskill J 2004 Topological quantum computation Lecture Notes http://www.theory.caltech.edu/∼preskill/ph219/topological.ps
[9] Kitaev A 2006 Anyons in an exactly solved model and beyond Ann. Phys.321 2-111 · Zbl 1125.82009 · doi:10.1016/j.aop.2005.10.005
[10] Bonderson P, Shtengel K and Slingerland J K 2008 Interferometry of non-abelian anyons Ann. Phys.323 2709-55 · Zbl 1151.81004 · doi:10.1016/j.aop.2008.01.012
[11] Bonderson P H 2007 Non-Abelian anyons and interferometry PhD Thesis Caltech, Pasadena, CA
[12] Haitan Xu and Wan X 2008 Constructing functional braids for low-leakage topological quantum computation Phys. Rev. A 78 042325 · doi:10.1103/PhysRevA.78.042325
[13] Vafa C 1988 Toward classification of conformal theories Phys. Lett. B 206 421-426 · doi:10.1016/0370-2693(88)91603-6
[14] Kuperberg G 2009 Denseness and Zariski denseness of Jones braid representations arXiv:0909.1881
[15] Dahm D M 1962 A generalisation of braid theory PhD Thesis Princeton University, Princeton
[16] Goldsmith D L 1981 The theory of motion groups Michigan Math. J.28 3-17 · Zbl 0462.57007 · doi:10.1307/mmj/1029002454
[17] Formanek E 1996 Braid group representations of low degree Proc. London Math. Soc.s3-73 (2) 279-322 · Zbl 0855.20038 · doi:10.1112/plms/s3-73.2.279
[18] Formanek E, Lee W, Sysoeva I and Vazirani M 2003 The irreducible representations of the braid group on n strings of degree ⩽nJ. Algebr. Appl.2 317-33 · Zbl 1050.20024 · doi:10.1142/S0219498803000477
[19] Rowell E, Stong R and Wang Z 2009 On classification of modular tensor categories Commun. Math. Phys.292 343-89 · Zbl 1186.18005 · doi:10.1007/s00220-009-0908-z
[20] Tuba I and Wenzl H 2001 Representations of the braid group \(B_3\) and of SL(2,Z) Pac. J. Math.197 491-510 · Zbl 1056.20025 · doi:10.2140/pjm.2001.197.491
[21] Slingerland J K and Bais F A 2001 Quantum groups and non-abelian braiding in quantum hall systems Nucl. Phys. B 612 229-90 · Zbl 0970.81107 · doi:10.1016/S0550-3213(01)00308-X
[22] Rowell E C and Wang Z 2010 Localization of unitary braid group representations arXiv:1009.0241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.