×

Global attractivity of a unique positive periodic solution for a first-order nonlinear difference equation with time delays. (English) Zbl 1451.39018

Summary: The present paper is directed toward the study on the global attractivity of a unique positive periodic solution of a discrete hematopoiesis model with unimodal production functions and several time delays. This model is described by a nonlinear difference equation. The result obtained is proved by transforming this model into another difference equation and by using the Schauder fixed-point theorem.

MSC:

39A60 Applications of difference equations
39A30 Stability theory for difference equations
92C37 Cell biology
47H10 Fixed-point theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, R. P.; Arshad, S.; O’Regan, D.; Lupulescu, V., A Schauder fixed point theorem in semilinear spaces and applications, Fixed Point Theory Appl., 2013, 306 (2013) · Zbl 1297.45006
[2] Berezansky, L.; Braverman, E.; Idels, L., Mackey-Glass model of hematopoiesis with non-monotone feedback: Stability, oscillation and control, Appl. Math. Comput., 219, 6268-6283 (2013) · Zbl 1402.92048
[3] Burton, T. A., Stability by Fixed Point Theory for Functional Differential Equations (2006), Dover Publications, Inc.: Dover Publications, Inc., Mineola, NY · Zbl 1160.34001
[4] Burton, T. A.; Zhang, B., A Schauder-type fixed point theorem, J. Math. Anal. Appl., 417, 552-558 (2014) · Zbl 1304.54073
[5] Dinauer, M.C., Newburger, P.E., and Borregaard, N., Phagocyte system and disorders of granulopoiesis and granulocyte function, in Nathan and Oski’s Hematology and Oncology of Infancy and Childhood, S.H. Orkin, D.E. Fisher, D. Ginsburg, A. Thomas, S.E. Lux, and D.G. Nathan, eds., 8th ed., Chapter 22, Elsevier, Philadelphia, PA, 2015, pp. 773-847.e29.
[6] Fortin, P.; Mackey, M. C., Periodic chronic myelogenous leukemia: spectral analysis of blood cell counts and aetiological implications, Br. J. Haematol., 104, 336-345 (1999)
[7] Gopalsamy, K.; Kulenović, M. R.S.; Ladas, G., Oscillations and global attractivity in models of hematopoiesis, J. Dynam. Differ. Equ., 2, 117-132 (1990) · Zbl 0694.34057
[8] Gopalsamy, K.; Trofimchuk, S. I.; Bantsur, N. R., A note on global attractivity in models of hematopoiesis, Ukrainian Math. J., 50, 3-12 (1998) · Zbl 0893.92012
[9] Györi, I.; Ladas, G., Oscillation Theory of Delay Differential Equations with Applications (1991), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press, New York · Zbl 0780.34048
[10] Khastan, A.; Nieto, J. J.; Rodríguez-López, R., Schauder fixed-point theorem in semilinear spaces and its application to fractional differential equations with uncertainty, Fixed Point Theory Appl., 2014, 21 (2014) · Zbl 1391.34004
[11] Kiskinov, H.; Zahariev, A.; Zlatev, S., Permanence of the positive solutions of the generalised hematopoiesis Mackey-Glass model, C. R. Acad. Bulgare Sci., 67, 745-752 (2014) · Zbl 1313.34255
[12] Long, S.S, Laboratory manifestations of infectious diseases, in Principles and Practice of Pediatric Infectious Diseases, S.S. Long, L.K. Pickering, and C.G. Prober, eds., 4th ed., Elsevier, Edinburgh, 2012, pp. 1400-1412.
[13] Lynch, S., Analysis of a blood cell population model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15, 2311-2316 (2005) · Zbl 1092.92504
[14] Mackey, M. C.; Glass, L., Oscillation and chaos in physiological control system, Sci., New Ser., 197, 287-289 (1977) · Zbl 1383.92036
[15] Roos, D., Neutrophils, in Encyclopedia of Immunology, P.J. Delves and I.M. Roitt, eds., 2nd ed., Academic Press, New-York, 1998, pp. 1854-1858.
[16] Satué, K.; Gardón, J. C.; Muñoz, A., Influence of the month of the year in the hematological profile in carthusian broodmares, Hematol. Leuk., 1, 6, 6 (2013)
[17] Sugie, J.; Yan, Y., Existence of multiple positive periodic solutions for discrete hematopoiesis models with a unimodal production function, Commun. Nonlinear Sci. Numer. Simul., 89 (2020)
[18] Teng, Z., On the periodic solutions of periodic multi-species competitive systems with delays, Appl. Math. Comput., 127, 235-247 (2002) · Zbl 1035.34078
[19] Wijayasiri, L.; McCombe, K., The Primary FRCA Structured Oral Exam Guide 1 (2016), Taylor & Francis Group: Taylor & Francis Group, Boca Raton, FL
[20] Wu, X.-M.; Li, J.-W.; Zhou, H.-Q., A necessary and sufficient condition for the existence of positive periodic solutions of a model of hematopoiesis, Comput. Math. Appl., 54, 840-849 (2007) · Zbl 1137.34333
[21] Xu, M.; Shi, B.; Zhang, D.-C., Global behaviour of a discrete haematopoiesis model, Indian J. Pure Appl. Math., 35, 273-283 (2004) · Zbl 1068.39029
[22] Yan, Y.; Sugie, J., Existence regions of positive periodic solutions for a discrete hematopoiesis model with unimodal production functions, Appl. Math. Model., 68, 152-168 (2019) · Zbl 1450.37091
[23] Yan, Y.; Sugie, J., Global asymptotic stability of a unique positive periodic solution for a discrete hematopoiesis model with unimodal production functions, Monatsh. Math., 191, 325-348 (2020) · Zbl 1430.37120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.