×

Estimates for the overall linear properties of pointwise heterogeneous solids with application to elasto-viscoplasticity. (English) Zbl 1451.74198

Summary: New estimates are derived for the overall properties of linear solids with pointwise heterogeneous local properties. The derivation relies on the use of ’comparison solids’ which, unlike comparison solids considered previously, are themselves pointwise heterogeneous. The estimates are then exploited within an incremental homogenization scheme to determine the overall response of multiphase elasto-viscoplastic solids under arbitrary loading histories. By way of example, the scheme is applied to incompressible Maxwellian solids with power-law plastic dissipation; particularly simple estimates of the Hashin-Shtrikman type are obtained. Predictions are confronted with full-field simulations for particulate composites under cyclic and rotating loading conditions. Good agreement is found for all cases considered. In particular, elasto-plastic transitions, tension-compression asymmetries (Bauschinger effect) and stress-path distortions induced by material heterogeneity are all well-captured, thus improving significantly on commonly used elastic-plastic decoupled schemes.

MSC:

74Q20 Bounds on effective properties in solid mechanics
74E05 Inhomogeneity in solid mechanics
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aravas, N.; Ponte Castañeda, P., Numerical methods for porous metals with deformation-induced anisotropy, Comput. Methods Appl. Mech. Eng., 193, 3767-3805 (2004) · Zbl 1068.74068
[2] Badulescu, C.; Lahellec, N.; Suquet, P., Field statistics in linear viscoelastic composites and polycrystals, Eur. J. Mech. Solids, 49, 329-344 (2015) · Zbl 1406.74138
[3] Germain, P.; Nguyen, Q.; Suquet, P., Continuum thermodynamics, J. Appl. Mech., 50, 1010-1020 (1983) · Zbl 0536.73004
[4] Hill, R., Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 13, 89-101 (1965) · Zbl 0127.15302
[5] Idiart, M. I., Modeling two-phase ferroelectric composites by sequential laminates, Model. Simul. Mater. Sci. Eng., 22, 025010 (2014)
[6] Idiart, M. I.; Ponte Castañeda, P., Field statistics in nonlinear composites I, Theory Proc. R. Soc. A, 463, 183-202 (2007) · Zbl 1129.74036
[7] Lahellec, N., Suquet, P., 2003. Composites non linéaires à deux potentiels: estimations affine et du second-order. In: Potier-Ferry, M., Bonnet, M., Bignonnet, A. (Eds.), 6ème Colloque National en Calcul des Structures. Tome 3. CSMA, pp. 49-56.; Lahellec, N., Suquet, P., 2003. Composites non linéaires à deux potentiels: estimations affine et du second-order. In: Potier-Ferry, M., Bonnet, M., Bignonnet, A. (Eds.), 6ème Colloque National en Calcul des Structures. Tome 3. CSMA, pp. 49-56.
[8] Lahellec, N.; Suquet, P., Effective behavior of linear viscoelastic compositesa time-integration approach, Int. J. Solids Struct., 44, 507-529 (2007) · Zbl 1123.74041
[9] Lahellec, N.; Suquet, P., On the effective behavior of nonlinear inelastic compositesI. Incremental variational principles, J. Mech. Phys. Solids, 55, 1932-1963 (2007) · Zbl 1170.74044
[10] Lahellec, N.; Suquet, P., Effective response and field statistics in elasto-plastic and elasto-viscoplastic composites under radial and non-radial loadings, Int. J. Plast., 42, 1-30 (2013)
[11] Lahellec, N.; Ponte Castañeda, P.; Suquet, P., Variational estimates for the effective response and field statistics in thermoelastic composites with intra-phase property fluctuations, Proc. R. Soc. A, 467, 2224-2246 (2011) · Zbl 1228.74068
[12] Masson, R.; Bornert, M.; Suquet, P.; Zaoui, A., An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals, J. Mech. Phys. Solids, 48, 1203-1227 (2000) · Zbl 0984.74068
[13] Miehe, C., Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation, Int. J. Numer. Methods Eng., 55, 1285-1322 (2002) · Zbl 1027.74056
[14] Miehe, C.; Rosato, D., A rate-dependent incremental variational formulation of ferroelectricity, Int. J. Eng. Sci., 49, 466-496 (2011) · Zbl 1231.74319
[15] Moulinec, H.; Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comp. Methods Appl. Mech. Eng., 157, 69-94 (1998) · Zbl 0954.74079
[16] Ponte Castañeda, New variational principles in plasticity and their application to composite materials, J. Mech. Phys. Solids, 40, 1757-1788 (1992) · Zbl 0764.73103
[17] Ponte Castañeda, P.; Suquet, P., Nonlinear composites, Adv. Appl. Mech., 34, 171-302 (1998) · Zbl 0889.73049
[18] Segurado, J.; Lebensohn, R. A.; LLorca, J.; Tomé, C. N., Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements, Int. J. Plast., 28, 124-140 (2012)
[19] Suquet, P., Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castañeda’s nonlinear variational procedure, C.R. Acad. Sci. Paris, Série IIb, 320, 563-571 (1995) · Zbl 0830.73046
[20] Suquet, P., Effective properties of nonlinear composites, (Suquet, P., Continuum Micromechanics. CISM Lecture Notes, vol. 377 (1997), Springer-Verlag: Springer-Verlag New York), 197-264 · Zbl 0883.73051
[21] Willis, J. R., Variational and Related Methods for the Overall Properties of Composites, Adv. Appl. Mech., 21, 1-78 (1981) · Zbl 0476.73053
[22] Withers, P. J., Residual stress and its role in failure, Rep. Progr. Phys., 70, 2211-2264 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.