×

Similarity between interval-valued fuzzy sets taking into account the width of the intervals and admissible orders. (English) Zbl 1452.03108

Summary: In this work we study a new class of similarity measures between interval-valued fuzzy sets. The novelty of our approach lays, firstly, on the fact that we develop all the notions with respect to total orders of intervals; and secondly, on that we consider the width of intervals so that the uncertainty of the output is strongly related to the uncertainty of the input. For constructing the new interval-valued similarity, interval valued aggregation functions and interval-valued restricted equivalence functions which take into account the width of the intervals are needed, so we firstly study these functions, both in line with the two above stated features. Finally, we provide an illustrative example which makes use of an interval-valued similarity measure in stereo image matching and we show that the results obtained with the proposed interval-valued similarity measures improve numerically (according to the most widely used measures in the literature) the results obtained with interval valued similarity measures which do not consider the width of the intervals.

MSC:

03E72 Theory of fuzzy sets, etc.
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Asiáin, M. J.; Bustince, H.; Mesiar, R.; Kolesárová, A.; Takáč, Z., Negations with respect to admissible orders in the interval-valued fuzzy set theory, IEEE Trans. Fuzzy Syst., 26, 556-568 (2018)
[2] Barrenechea, E.; Bustince, H.; De Baets, B.; Lopez-Molina, C., Construction of interval-valued fuzzy relations with application to the generation of fuzzy edge images, IEEE Trans. Fuzzy Syst., 19, 5, 819-830 (2011)
[3] Barrenechea, E.; Fernandez, J.; Pagola, M.; Chiclana, F.; Bustince, H., Construction of interval-valued fuzzy preference relations from ignorance functions and fuzzy preference relations. Application to decision making, Knowl.-Based Syst., 58, 33-44 (2014)
[4] Bentkowska, U.; Bustince, H.; Jurio, A.; Pagola, M.; Pekala, B., Decision making with an interval-valued fuzzy preference relation and admissible orders, Appl. Soft Comput., 35, 792-801 (2015)
[5] Burillo, P.; Bustince, H., Construction theorems for intuitionistic fuzzy sets, Fuzzy Sets Syst., 84, 271-281 (1996) · Zbl 0903.04001
[6] Bustince, H., Indicator of inclusion grade for interval-valued fuzzy sets. Application to approximate reasoning based on interval-valued fuzzy sets, Int. J. Approx. Reason., 23, 3, 137-209 (2000) · Zbl 1046.68646
[7] Bustince, H.; Barrenechea, E.; Pagola, M., Relationship between restricted dissimilarity functions, restricted equivalence functions and normal \(E_N\)-functions: image thresholding invariant, Pattern Recognit. Lett., 29, 4, 525-536 (2008)
[8] Burillo, P.; Bustince, H., Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets, Fuzzy Sets Syst., 78, 305-316 (1996) · Zbl 0872.94061
[9] Bustince, H.; Barrenechea, E.; Pagola, M., Image thresholding using restricted equivalence functions and maximizing the measure of similarity, Fuzzy Sets Syst., 128, 5, 496-516 (2007) · Zbl 1111.68139
[10] Bustince, H.; Barrenechea, E.; Pagola, M., Restricted equivalence functions, Fuzzy Sets Syst., 157, 17, 2333-2346 (2006) · Zbl 1110.68158
[11] Bustince, H.; Barrenechea, E.; Pagola, M.; Fernández, J.; Xu, Z.; Bedregal, B.; Montero, J.; Hagras, H.; Herrera, F.; De Baets, B., A historical account of types of fuzzy sets and their relationship, IEEE Trans. Fuzzy Syst., 24, 1, 179-194 (2016)
[12] Bustince, H.; Fernandez, J.; Kolesárová, A.; Mesiar, R., Generation of linear orders for intervals by means of aggregation functions, Fuzzy Sets Syst., 220, 69-77 (2013) · Zbl 1284.03242
[13] Cornelis, C.; Deschrijver, G.; Kerre, E. E., Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application, Int. J. Approx. Reason., 35, 1, 55-95 (2004) · Zbl 1075.68089
[14] Couso, I.; Bustince, H., From fuzzy sets to interval-valued and Atanassov intuitionistic fuzzy sets: a unified view of different axiomatic measures, IEEE Trans. Fuzzy Syst., 27, 2, 362-371 (2019)
[15] Couso, I.; Sánchez, L., Additive similarity and dissimilarity measures, Fuzzy Sets Syst., 322, 35-53 (2017) · Zbl 1375.03067
[16] Choi, H. M.; Mun, G. S.; Ahn, J. Y., A medical diagnosis based on interval-valued fuzzy sets, Biomed. Eng. Appl. Basis Commun., 24, 4, 349-354 (2012)
[17] Couto, P.; Jurio, A.; Varejao, A.; Pagola, M.; Bustince, H.; Melo-Pinto, P., An IVFS-based image segmentation methodology for rat gait analysis, Soft Comput., 15, 10, 1937-1944 (2011)
[18] Deng, G.; Song, L.; Jiang, Y.; Fu, J., Monotonic similarity measures of interval-valued fuzzy sets and their applications, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 25, 4, 515-544 (2017) · Zbl 1377.03039
[19] Deza, E.; Dezam, M.-M., Image and audio distances, (Dictionary Distances (2006), Elsevier), 262-278
[20] Dubois, D.; Prade, H., Gradualness, uncertainty and bipolarity: making sense of fuzzy sets, Fuzzy Sets Syst., 192, 3-24 (2012) · Zbl 1238.03044
[21] Faugeras, O.; Viéville, T.; Theron, E.; Vuillemin, J.; Hotz, B.; Zhang, Z.; Moll, L.; Bertin, P.; Mathieu, H.; Fua, P.; Berry, G.; Proy, C., Real-Time Correlation-Based Stereo: Algorithm, Implementations and Applications (1993), INRIA, Research Report RR-2013
[22] Fodor, J.; Roubens, M., Fuzzy preference modelling and multicriteria decision support, (Theory and Decision Library (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht) · Zbl 0827.90002
[23] Galar, M.; Fernandez, J.; Beliakov, G.; Bustince, H., Interval-valued fuzzy sets applied to stereo matching of color images, IEEE Trans. Image Process., 20, 7, 1949-1961 (2011) · Zbl 1372.94085
[24] Heidarzade, A., A new similarity measure for interval type-2 fuzzy sets: application in fuzzy risk analysis, Int. J. Appl. Decis. Sci., 9, 4, 400-412 (2016)
[25] Hosni, A.; Rhemann, C.; Bleyer, M.; Rother, C.; Gelautz, M., Fast cost-volume filtering for visual correspondence and beyond, IEEE Trans. Pattern Anal. Mach. Intell., 35, 2, 504-511 (Feb 2013)
[26] Hurwicz, L., The Generalised Bayes Minimax Principle. A Criterion for Decision Making Under Uncertainty (1951), Cowles Comission Discussion Paper 355
[27] Jurio, A.; Pagola, M.; Mesiar, R.; Beliakov, G.; Bustince, H., Image magnification using interval information, IEEE Trans. Image Process., 20, 11, 3112-3123 (2011) · Zbl 1372.94126
[28] Komorníková, M.; Mesiar, R., Aggregation functions on bounded partially ordered sets and their classification, Fuzzy Sets Syst., 175, 1, 48-56 (2011) · Zbl 1253.06004
[29] Liu, X., Entropy, distance measure and similarity measure of fuzzy sets and their relations, Fuzzy Sets Syst., 52, 305-318 (1992) · Zbl 0782.94026
[30] Lu, Z.; Ye, J., Logarithmic similarity measure between interval-valued fuzzy sets and its fault diagnosis method, Information (Switzerland), 9, Article 36 pp. (2018)
[31] Mesiar, R.; Komorníková, M., Aggregation functions on bounded posets, (Cornelis, C.; etal., 35 Years of Fuzzy Sets Theory. 35 Years of Fuzzy Sets Theory, Studies in Fuzziness and Soft Computing, vol. 261 (2010), Springer: Springer Berlin), 3-17 · Zbl 1231.03048
[32] Nieradka, G.; Butkiewicz, B. S., Features stereo matching based on fuzzy logic, (Proceedings IFSA/EUSFLAT Conference (2009)), 1188-1193
[33] Pradera, A.; Beliakov, G.; Bustince, H.; De Baets, B., A review of the relationship between implication, negation and aggregation functions from the point of view of material implication, Inf. Sci., 329, 357-380 (2016) · Zbl 1387.03023
[34] Sambuc, R., Function phi-flous application a l’aide au diagnostic en pathologie thyroidienne (1975), University of Marseille, PhD thesis
[35] Sanz, J. A.; Fernandez, A.; Bustince, H.; Herrera, F., IVTURS: a linguistic fuzzy rule-based classification system based on a new interval-valued fuzzy reasoning method with tuning and rule selection, IEEE Trans. Fuzzy Syst., 21, 3, 399-411 (2013)
[36] Scharstein, D.; Szeliski, R., A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, Int. J. Comput. Vis., 47, 1/3, 7-42 (2002) · Zbl 1012.68731
[37] Sun, C., Fast stereo matching using rectangular subregioning and 3D maximum-surface techniques, Int. J. Comput. Vis., 47, 1-3, 99-117 (2002) · Zbl 1012.68734
[38] Tolt, G.; Kalaykov, I., Measures based on fuzzy similarity for stereo matching of color images, Soft Comput., 10, 12, 1117-1126 (Oct 2006) · Zbl 1141.68648
[39] Trucco, E.; Roberto, V.; Tinonin, S.; Corbatto, M., SSD disparity estimation for dynamic stereo, (BMVC (1996)), 1-10
[40] Xu, Z. S.; Yager, R. R., Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35, 417-433 (2006) · Zbl 1113.54003
[41] Ye, J., Multicriteria decision-making method based on cosine similarity measures between interval-valued fuzzy sets with risk preference, Econ. Comput. Econ. Cybern. Stud. Res., 50, 4, 205-215 (2016)
[42] Yu, W.; Chen, T.; Hoe, J. C., Real time stereo vision using exponential step cost aggregation on GPU, (Proc. - Int. Conf. Image Process. ICIP (2009)), 4281-4284
[43] Zabih, R.; Woodfill, J., Non-parametric local transforms for computing visual correspondence, (Eklundh, Jan-Olof, Comput. Vis. — ECCV ’94 (1994), Springer: Springer Berlin, Heidelberg), 151-158
[44] Brown, M. Z.; Burschka, D.; Hager, G. D., Advances in computational stereo, IEEE Trans. Pattern Anal. Mach. Intell., 25, 8, 993-1008 (Aug 2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.