Modelling residuals dependence in dynamic life tables: a geostatistical approach. (English) Zbl 1452.62760

Summary: The problem of modelling dynamic mortality tables is considered. In this context, the influence of age on data graduation needs to be properly assessed through a dynamic model, as mortality progresses over the years. After detrending the raw data, the residuals dependence structure is analysed, by considering them as a realisation of a homogeneous Gaussian random field defined on \(\mathbb R \times \mathbb R\). This setting allows for the implementation of geostatistical techniques for the estimation of the dependence and further interpolation in the domain of interest. In particular, a complex form of interaction between age and time is considered, by taking into account a zonally anisotropic component embedded into a nonseparable covariance structure. The estimated structure is then used for prediction of mortality rates, and goodness-of-fit testing is performed through some cross-validation techniques. Comments on validity and interpretation of the results are given.


62P05 Applications of statistics to actuarial sciences and financial mathematics
62-08 Computational methods for problems pertaining to statistics
91D20 Mathematical geography and demography
91G05 Actuarial mathematics


Full Text: DOI


[1] Benjamin, B.; Pollard, J., The analysis of mortality and other actuarial statistics, (1992), Butterworth-Heinemann London
[2] Bevilacqua, M., Mateu, J., Porcu, E., Gaetan, C., 2007. Composite likelihood methods for space-time covariance model estimation. Technometrics, to appear. · Zbl 1261.62088
[3] Bochner, S., Monotone funktionen, Stieltjes integrale und harmonische analyse, Math. ann., 108, 378-410, (1933) · JFM 59.0272.01
[4] Booth, H., Demographic forecasting: 1980 to 2005 in review, Internat. J. forecasting, 22, 3, 547-582, (2006)
[5] Booth, H.; Maindonald, J.; Smith, L., Applying lee – carter under conditions of variable mortality decline, Population stud., 56, 3, 325-336, (2002)
[6] Brouhns, N.; Denuit, M.; Vermunt, J., A Poisson log-bilinear regression approach to the construction of projected lifetables, Insurance math. econom., 31, 3, 373-393, (2002) · Zbl 1074.62524
[7] Christakos, G., Modern spatiotemporal geostatistics, (2000), Oxford University Press Oxford
[8] Christakos, G.; Papanicolaou, V., Norm-dependent covariance permissibility of weakly homogeneous spatial random fields, Stochastic environ. res. risk assessment, 14, 6, 1-8, (2000) · Zbl 0968.62069
[9] Cressie, N., Statistics for spatial data, (1993), Wiley New York
[10] Curriero, F.C.; Lele, S., A composite likelihood approach to semivariogram estimation, J. agricultural biological environ. statist., 4, 9-28, (1999)
[11] Debón, A.; Martínez-Ruiz, F.; Montes, F., Dynamic life tables: a geostatistical approach, () · Zbl 1231.91173
[12] Debón, A.; Montes, F.; Sala, R., A comparison of parametric models for mortality graduation. application to mortality data of the Valencia region (Spain), Statist. oper. res. trans., 29, 2, 269-287, (2005) · Zbl 1274.62691
[13] Debón, A.; Montes, F.; Sala, R., A comparison of models for dynamical life tables. application to mortality data of the Valencia region (Spain), Lifetime data anal., 12, 2, 223-244, (2006) · Zbl 1134.62369
[14] Debón, A.; Montes, F.; Sala, R., A comparison of nonparametric methods in the graduation of mortality: application to data from the Valencia region (Spain), Internat. statist. rev., 74, 2, 215-233, (2006) · Zbl 1134.62369
[15] Debón, A., Montes, F., Puig, F., 2007. Modelling and forecasting mortality in Spain. Eur. J. Oper. Res., doi:10.1016/j.ejor.2006.07.050.
[16] Efron, B.; Tibshirani, R., An introduction to the bootstrap, (1998), CRC Press Boca Ratón, FL
[17] Felipe, A.; Guillén, M.; Pérez-Marín, A., Recent mortality trends in the Spanish population, British actuar. J., 8, 4, 757-786, (2002)
[18] Forfar, D.; McCutcheon, J.; Wilkie, A., On graduation by mathematical formula, J. inst. actuar., 115 part I, 459, 1-149, (1988)
[19] Gavin, J.; Haberman, S.; Verrall, R., Moving weighted average graduation using kernel estimation, Insurance math. econom, 12, 2, 113-126, (1993) · Zbl 0778.62096
[20] Gavin, J.; Haberman, S.; Verrall, R., On the choice of bandwidth for kernel graduation, J. inst. actuar., 121, 119-134, (1994)
[21] Gavin, J.; Haberman, S.; Verrall, R., Graduation by kernel and adaptive kernel methods with a boundary correction, Trans. soc. actuar., XLVII, 173-209, (1995)
[22] Guillen, M.; Vidiella-i-Anguera, A., Forecasting Spanish natural life expectancy, Risk anal., 25, 5, 1161-1170, (2005)
[23] Hyndman, R.J.; Ullah, Md.S., Robust forecasting of mortality and fertility rates: a functional data approach, Comput. statist. data anal., 51, 10, 4942-4956, (2007) · Zbl 1162.62434
[24] Koissi, M.; Shapiro, A.; Högnäs, G., Evaluating and extending the lee – carter model for mortality forecasting confidence interval, Insurance math. econom., 38, 1, 1-20, (2006) · Zbl 1098.62138
[25] Lee, R., The lee – carter method for forecasting mortality, with various extensions and applications, North amer. actuar. J., 4, 1, 80-91, (2000) · Zbl 1083.62535
[26] Lee, R.; Carter, L., Modelling and forecasting U.S. mortality, J. amer. statist. assoc., 87, 419, 659-671, (1992) · Zbl 1351.62186
[27] Matérn, B., Spatial variation, (1986), Springer Berlin · Zbl 0608.62122
[28] Matheron, G., LES variables Régionalisées et leur estimation, (1965), Masson et Cie Paris
[29] Pedroza, C., A Bayesian forecasting model: predicting U.S. male mortality, Biostatistics, 7, 4, 530-550, (2006) · Zbl 1170.62397
[30] Perrin, O.; Senoussi, R., Reducing non-stationary random fields to stationarity and isotropy using a space deformation, Statist. probab. lett., 48, 1, 23-32, (1999) · Zbl 0951.60060
[31] Pitacco, E., Survival models in dynamic context: a survey, Insurance math. econom., 35, 2, 279-298, (2004) · Zbl 1079.91050
[32] Porcu, E.; Gregori, P.; Mateu, J., Nonseparable stationary anisotropic space time covariance functions, Stochastic environ. res. risk assessment, 21, 113-122, (2006)
[33] Porcu, E.; Mateu, J.; Bevilacqua, M., Covariance functions which are stationary or nonstationary in space and stationary in time, Statist. neerlandica, 61, 3, 358-382, (2007) · Zbl 1121.62082
[34] Renshaw, A., Actuarial graduation practice and generalised linear models, J. inst. actuar., 118, II, 295-312, (1991)
[35] Renshaw, A.; Haberman, S., Lee – carter mortality forecasting: a parallel generalized linear modelling approach for england and wales mortality projections, J. roy. statist. soc. C, 52, 1, 119-137, (2003) · Zbl 1111.62359
[36] Renshaw, A.; Haberman, S., Lee – carter mortality forecasting with age specific enhancement, Insurance math. econom., 33, 2, 255-272, (2003) · Zbl 1103.91371
[37] Renshaw, A., Haberman, S., 2003c. Lee-Carter mortality forecasting incorporating bivariate time series. Actuarial Research paper No. 153, City University, London. · Zbl 1111.62359
[38] Renshaw, A.; Haberman, S., A cohort-based extension to the lee – carter model for mortality reduction factors, Insurance math. econom., 38, 3, 556-570, (2006) · Zbl 1168.91418
[39] Shumway, R.; Stoffer, D., Time series analysis and its applications with R examples, (2006), Springer New York · Zbl 1096.62088
[40] Tabeau, E.; van den Berg Jeths, A.; Heathcote, C., A review of demographic forecasting models for mortality. forecasting in developed countries: from description to explanation, (2001), Kluwer Academic Publishers Dordrecht
[41] Wilmoth, J., 1993. Computational methods for fitting and extrapolating the Lee-Carter model of mortality change. Technical Report, Department of Demography, University of California, Berkeley.
[42] Wong-Fupuy, C.; Haberman, S., Projecting mortality trends: recent developments in the united kingdom and the united states, North amer. actuar. J., 8, 2, 56-83, (2004) · Zbl 1085.62517
[43] Yaglom, A.M., Correlation theory of stationary and related random functions, (1987), Springer New York · Zbl 0685.62078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.