×

A unified gas-kinetic scheme for continuum and rarefied flows VI: dilute disperse gas-particle multiphase system. (English) Zbl 1452.76213

Summary: In this paper, a unified gas-kinetic scheme (UGKS) for multiphase dilute gas-particle system is proposed. The UGKS multiphase (UGKS-M) is a finite volume method, which captures flow physics in the regimes from collisionless multispecies transport to the two-fluid hydrodynamic Navier-Stokes (NS) solution with the variation of Knudsen number, and from granular flow regime to dusty gas dynamics with the variation of Stokes number. The reason for preserving the multiscale nature in UGKS-M is mainly coming from the direct modeling of the flow physics in the scales of discrete cell size and time step, where the ratio of the time step to the particle collision time determines flow behavior in different regimes. For the particle phase, the time evolution solution of the kinetic model equation is used in the construction of numerical flux, which takes into account the particle transport, collision, and acceleration. The gas phase is assumed to be in the continuum flow regime and evolves numerically by the gas-kinetic scheme (GKS), which is a subset of the UGKS for the Navier-Stokes solutions. The interaction between the gas and particle phase is calculated based on a velocity space mapping method, which solves accurately the kinetic acceleration process. The stability of UGKS-M is determined by the CFL condition only. With the inclusion of the material temperature evolution equation of solid particles, once the total energy loss in inelastic collision transfers into particle material thermal energy, the UGKS-M conserves the total mass, momentum, and energy for the whole multiphase system. In the numerical tests, the UGKS-M shows multiscale property in capturing the particle trajectory crossing (PTC), particle wall reflecting phenomena, and vortex-induced segregation of inertial particles under different Stokes numbers. The scheme is also applied to simulate shock induced fluidization problem, where the simulation results agree well with experimental measurements.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76T15 Dusty-gas two-phase flows
76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
76N06 Compressible Navier-Stokes equations
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65Z05 Applications to the sciences
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andrews, M.; O’Rourke, P., The multiphase particle-in-cell (MP-PIC) method for dense particulate flows, Int. J. Multiph. Flow, 22, 2, 379-402 (1996) · Zbl 1135.76348
[2] Benyahia, S.; Syamlal, M.; O’Brien, T. J., Study of the ability of multiphase continuum models to predict core-annulus flow, AIChE J., 53, 10, 2549-2568 (2007)
[3] Bird, G. A., Molecular Gas Dynamics (1976), NASA STI/Recon Technical Report A 76
[4] Brilliantov, N. V.; Pöschel, T., Kinetic Theory of Granular Gases (2010), Oxford University Press · Zbl 1208.76003
[5] Campbell, C. S., Rapid granular flows, Annu. Rev. Fluid Mech., 22, 1, 57-90 (1990)
[6] Chapman, S.; Cowling, T. G.; Burnett, D., The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (1990), Cambridge University Press
[7] Chen, S.; Xu, K., A comparative study of an asymptotic preserving scheme and unified gas-kinetic scheme in continuum flow limit, J. Comput. Phys., 288, 52-65 (2015) · Zbl 1351.76230
[8] Chertock, A.; Cui, S.; Kurganov, A., Hybrid finite-volume-particle method for dusty gas flows, Détail, 3, 139-180 (2017) · Zbl 1416.76143
[9] Dartevelle, S.; Rose, W. I.; Stix, J.; Kelfoun, K.; Vallance, J. W., Numerical modeling of geophysical granular flows: 2. Computer simulations of plinian clouds and pyroclastic flows and surges, Geochem. Geophys. Geosyst., 5, 8 (2004)
[10] De Chaisemartin, S.; Laurent, F.; Massot, M.; Reveillon, J., Evaluation of Eulerian Multi-Fluid Versus Lagrangian Methods for Ejection of Polydisperse Evaporating Sprays by Vortices (2007), Tech. rep., Annual Report of European Project TIMECOP-AE
[11] Desjardins, O.; Fox, R. O.; Villedieu, P., A quadrature-based moment method for dilute fluid-particle flows, J. Comput. Phys., 227, 4, 2514-2539 (2008) · Zbl 1261.76027
[12] Ding, J.; Gidaspow, D., A bubbling fluidization model using kinetic theory of granular flow, AIChE J., 36, 4, 523-538 (1990)
[13] Dobran, F.; Neri, A.; Macedonio, G., Numerical simulation of collapsing volcanic columns, J. Geophys. Res., Solid Earth, 98, B3, 4231-4259 (1993)
[14] Fox, R. O., A quadrature-based third-order moment method for dilute gas-particle flows, J. Comput. Phys., 227, 12, 6313-6350 (2008) · Zbl 1388.76247
[15] Fox, R. O., Higher-order quadrature-based moment methods for kinetic equations, J. Comput. Phys., 228, 20, 7771-7791 (2009) · Zbl 1391.82049
[16] Goldhirsch, I., Rapid granular flows, Annu. Rev. Fluid Mech., 35, 1, 267-293 (2003) · Zbl 1125.76406
[17] Hoomans, B.; Kuipers, J.; Briels, W. J.; van Swaaij, W. P.M., Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach, Chem. Eng. Sci., 51, 1, 99-118 (1996)
[18] Huang, J.-C.; Xu, K.; Yu, P., A unified gas-kinetic scheme for continuum and rarefied flows II: multi-dimensional cases, Commun. Comput. Phys., 12, 3, 662-690 (2012) · Zbl 1373.76216
[19] Huang, J.-C.; Xu, K.; Yu, P., A unified gas-kinetic scheme for continuum and rarefied flows III: microflow simulations, Commun. Comput. Phys., 14, 5, 1147-1173 (2013) · Zbl 1373.76217
[20] Jenkins, J. T.; Savage, S. B., A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles, J. Fluid Mech., 130, 187-202 (1983) · Zbl 0523.76001
[21] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, vol. 31 (2002), Cambridge University Press · Zbl 1010.65040
[22] Liu, C.; Xu, K., A unified gas kinetic scheme for continuum and rarefied flows V: multiscale and multi-component plasma transport, Commun. Comput. Phys., 22, 5, 1175-1223 (2017) · Zbl 1488.76125
[23] Liu, C.; Xu, K.; Sun, Q.; Cai, Q., A unified gas-kinetic scheme for continuum and rarefied flows IV: full Boltzmann and model equations, J. Comput. Phys., 314, 305-340 (2016) · Zbl 1349.82055
[24] Liu, C.; Zhou, G.; Shyy, W.; Xu, K., Limitation principle for computational fluid dynamics, Shock Waves (2019), in press
[25] Lun, C.; Savage, S. B.; Jeffrey, D.; Chepurniy, N., Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield, J. Fluid Mech., 140, 223-256 (1984) · Zbl 0553.73098
[26] Marchisio, D. L.; Fox, R. O., Computational Models for Polydisperse Particulate and Multiphase Systems (2013), Cambridge University Press
[27] McGraw, R., Description of aerosol dynamics by the quadrature method of moments, Aerosol Sci. Technol., 27, 2, 255-265 (1997)
[28] O’Rourke, P. J.; Snider, D. M., An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets, Chem. Eng. Sci., 65, 22, 6014-6028 (2010)
[29] O’Rourke, P. J.; Snider, D. M., Inclusion of collisional return-to-isotropy in the MP-PIC method, Chem. Eng. Sci., 80, 39-54 (2012)
[30] Patankar, N.; Joseph, D., Lagrangian numerical simulation of particulate flows, Int. J. Multiph. Flow, 27, 10, 1685-1706 (2001) · Zbl 1137.76710
[31] Pelanti, M.; LeVeque, R. J., High-resolution finite volume methods for dusty gas jets and plumes, SIAM J. Sci. Comput., 28, 4, 1335-1360 (2006) · Zbl 1123.76042
[32] Rogue, X.; Rodriguez, G.; Haas, J.; Saurel, R., Experimental and numerical investigation of the shock-induced fluidization of a particles bed, Shock Waves, 8, 1, 29-45 (1998) · Zbl 0899.76024
[33] Saito, T., Numerical analysis of dusty-gas flows, J. Comput. Phys., 176, 1, 129-144 (2002) · Zbl 1120.76350
[34] Saito, T.; Eguchi, T.; Takayama, K.; Taniguchi, H., Hazard predictions for volcanic explosions, J. Volcanol. Geotherm. Res., 106, 1-2, 39-51 (2001)
[35] Saito, T.; Kitamura, T.; Takayama, K.; Fujii, N.; Taniguchi, H., Numerical simulations of blast wave propagation induced by eruptions of volcanoes, (Shock Waves@ Marseille III (1995), Springer), 385-390
[36] Saito, T.; Marumoto, M.; Takayama, K., Numerical investigations of shock waves in gas-particle mixtures, Shock Waves, 13, 4, 299-322 (2003) · Zbl 1063.76063
[37] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 2, 425-467 (1999) · Zbl 0937.76053
[38] Saurel, R.; Chinnayya, A.; Carmouze, Q., Modelling compressible dense and dilute two-phase flows, Phys. Fluids, 29, 6, Article 063301 pp. (2017)
[39] Schiller, L.; Nauman, A., A drag coefficient correlation, V.D.I. Zeitung, 77, 318-320 (1935)
[40] Snider, D., An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows, J. Comput. Phys., 170, 2, 523-549 (2001) · Zbl 1051.76054
[41] Snider, D.; O’rourke, P.; Andrews, M., Sediment flow in inclined vessels calculated using a multiphase particle-in-cell model for dense particle flows, Int. J. Multiph. Flow, 24, 8, 1359-1382 (1998) · Zbl 1121.76474
[42] Squires, K. D.; Eaton, J. K., Preferential concentration of particles by turbulence, Phys. Fluids A, Fluid Dyn., 3, 5, 1169-1178 (1991)
[43] Sun, W.; Jiang, S.; Xu, K., An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations, J. Comput. Phys., 285, 265-279 (2015) · Zbl 1351.76186
[44] Sun, W.; Jiang, S.; Xu, K., A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh, J. Comput. Phys., 351, 455-472 (2017) · Zbl 1375.76137
[45] Sun, W.; Jiang, S.; Xu, K., An asymptotic preserving implicit unified gas kinetic scheme for requency-dependent radiative transfer equations, Int. J. Numer. Anal. Model., 15, 134-153 (2018) · Zbl 1410.82022
[46] Sun, W.; Jiang, S.; Xu, K.; Li, S., An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations, J. Comput. Phys., 302, 222-238 (2015) · Zbl 1349.76735
[47] Syamlal, M.; Gidaspow, D., Hydrodynamics of fluidization: prediction of wall to bed heat transfer coefficients, AIChE J., 31, 1, 127-135 (1985)
[48] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209, 2, 448-476 (2005) · Zbl 1138.76398
[49] Wang, R.; Xu, K., Unified gas-kinetic scheme for multi-species non-equilibrium flow, (AIP Conference Proceedings, vol. 1628 (2014), AIP), 970-975
[50] Wang, Z.; Yan, H.; Li, Q.; Xu, K., Unified gas-kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes, J. Comput. Phys., 350, 237-259 (2017) · Zbl 1380.76071
[51] Xiao, T.; Cai, Q.; Xu, K., A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field, J. Comput. Phys., 332, 475-491 (2017) · Zbl 1378.76099
[52] Xu, K., A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys., 171, 1, 289-335 (2001) · Zbl 1058.76056
[53] Xu, K., Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-Kinetic Schemes, Adv. Comput. Fluid Dyn., vol. 4 (2015), World Scientific · Zbl 1309.76003
[54] Xu, K.; Huang, J.-C., A unified gas-kinetic scheme for continuum and rarefied flows, J. Comput. Phys., 229, 20, 7747-7764 (2010) · Zbl 1276.76057
[55] Xu, K.; Liu, C., A paradigm for modeling and computation of gas dynamics, Phys. Fluids, 29, 2, Article 026101 pp. (2017)
[56] Yang, J.; Huang, J., Rarefied flow computations using nonlinear model Boltzmann equations, J. Comput. Phys., 120, 2, 323-339 (1995) · Zbl 0845.76064
[57] Zhu, Y.; Zhong, C.; Xu, K., Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes, J. Comput. Phys., 315, 16-38 (2016) · Zbl 1349.76791
[58] Zhu, Y.; Zhong, C.; Xu, K., Unified gas-kinetic scheme with multigrid convergence for rarefied flow study, Phys. Fluids, 29, 9, Article 096102 pp. (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.