×

Critical percolation and \(\mathrm{A + B \rightarrow 2A}\) dynamics. (English) Zbl 1453.60157

Summary: We study an interacting particle system in which moving particles activate dormant particles linked by the components of critical bond percolation. Addressing a conjecture from Beckman, Dinan, Durrett, Huo, and Junge for a continuous variant [E. Beckman et al., Electron. J. Probab. 23, Paper No. 104, 19 p. (2018; Zbl 1402.60124)], we prove that the process can reach infinity in finite time i.e., explode. In particular, we prove that explosions occur almost surely on regular trees as well as oriented and unoriented two-dimensional integer lattices with sufficiently many particles per site. The oriented case requires an additional hypothesis about the value of a certain critical exponent. We further prove that the process with one particle per site expands at a superlinear rate on integer lattices of any dimension. Some arguments use connections to critical first passage percolation, including a new result about the existence of an infinite path with finite passage time on the oriented two-dimensional lattice.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C43 Time-dependent percolation in statistical mechanics

Citations:

Zbl 1402.60124
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alves, OSM; Machado, FP; Popov, SY, The shape theorem for the frog model, Ann. Appl. Probab., 12, 2, 533-546 (2002) · Zbl 1013.60081 · doi:10.1214/aoap/1026915614
[2] Amini, O.; Devroye, L.; Griffiths, S.; Olver, N., On explosions in heavy-tailed branching random walks, Ann. Probab., 41, 3, 1864-1899 (2013) · Zbl 1304.60093 · doi:10.1214/12-AOP806
[3] Auffinger, A.; Damron, M.; Hanson, J., 50 Years of First-Passage Percolation (2017), Providence: American Mathematical Society, Providence · Zbl 1452.60002
[4] Beckman, E.; Dinan, E.; Durrett, R.; Huo, R.; Junge, M., Asymptotic behavior of the Brownian frog model, Electron. J. Probab., 23, 19 (2018) · Zbl 1402.60124 · doi:10.1214/18-EJP215
[5] Bramson, MD, Minimal displacement of branching random walk, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 45, 2, 89-108 (1978) · Zbl 0373.60089 · doi:10.1007/BF00715186
[6] Chayes, JT; Chayes, L.; Durrett, R., Critical behavior of the two-dimensional first passage time, J. Stat. Phys., 45, 5-6, 933-951 (1986) · Zbl 0629.60109 · doi:10.1007/BF01020583
[7] Cristali, I., Junge, M., Durrett, R.: Poisson percolation on the square lattice. arXiv:1712.03403 (2017) · Zbl 1481.60015
[8] Cristali, I.; Junge, M.; Durrett, R., Poisson percolation on the oriented square lattice, Stoch. Process. Appl., 130, 488-502 (2019) · Zbl 1471.60148 · doi:10.1016/j.spa.2019.01.005
[9] Damron, M.; Lam, W-K; Wang, X., Asymptotics for \(2d\) critical first passage percolation, Ann. Probab., 45, 5, 2941-2970 (2017) · Zbl 1378.60115 · doi:10.1214/16-AOP1129
[10] Döbler, C.; Pfeifroth, L., Recurrence for the frog model with drift on \({\mathbb{Z}}^d\), Electron. Commun. Probab., 19, 79, 13 (2014) · Zbl 1325.60155
[11] Döbler, C.; Gantert, N.; Höfelsauer, T.; Popov, S.; Weidner, F., Recurrence and transience of frogs with drift on \({\mathbb{Z}}^d\), Electron. J. Probab., 23, 23 (2018) · Zbl 1414.60057
[12] Duminil-Copin, H.; Tassion, V.; Teixeira, A., The box-crossing property for critical two-dimensional oriented percolation, Probab. Theory Relat. Fields, 171, 3-4, 685-708 (2018) · Zbl 1428.60138 · doi:10.1007/s00440-017-0790-0
[13] Durrett, R., Oriented percolation in two dimensions, Ann. Probab., 12, 999-1040 (1984) · Zbl 0567.60095 · doi:10.1214/aop/1176993140
[14] Durrett, R., Probability: Theory and Examples (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1202.60001
[15] Durrett, R.; Schonmann, RH; Tanaka, NI, Correlation lengths for oriented percolation, J. Stat. Phys., 55, 5-6, 965-979 (1989) · Zbl 0714.60097 · doi:10.1007/BF01041074
[16] Fitzner, R.; van der Hofstad, R., Mean-field behavior for nearest-neighbor percolation in \(d> 10\), Electron. J. Probab., 22, 65 (2017) · Zbl 1364.60130 · doi:10.1214/17-EJP56
[17] Grimmett, GR; Marstrand, JM; Williams, D., The supercritical phase of percolation is well behaved, Proc. R. Soc. Lond. A, 430, 1879, 439-457 (1990) · Zbl 0711.60100 · doi:10.1098/rspa.1990.0100
[18] Hara, T.; Slade, G., Mean-field critical behaviour for percolation in high dimensions, Commun. Math. Phys., 128, 2, 333-391 (1990) · Zbl 0698.60100 · doi:10.1007/BF02108785
[19] Heydenreich, M.; van der Hofstad, R., Fixing Ideas: Percolation on a Tree and Branching Random Walk, 19-29 (2017), Cham: Springer International Publishing, Cham
[20] Hoffman, C.; Johnson, T.; Junge, M., Recurrence and transience for the frog model on trees, Ann. Probab., 45, 5, 2826-2854 (2017) · Zbl 1385.60058 · doi:10.1214/16-AOP1125
[21] Kesten, H., The critical probability of bond percolation on the square lattice equals 1/2, Commun. Math. Phys., 74, 1, 41-59 (1980) · Zbl 0441.60010 · doi:10.1007/BF01197577
[22] Kesten, H.; Sidoravicius, V., The spread of a rumor or infection in a moving population, Ann. Probab., 33, 6, 2402-2462 (2005) · Zbl 1111.60074 · doi:10.1214/009117905000000413
[23] Kesten, H.; Sidoravicius, V., A phase transition in a model for the spread of an infection, Illinois J. Math., 50, 1-4, 547-634 (2006) · Zbl 1101.92040 · doi:10.1215/ijm/1258059486
[24] Kesten, H.; Sidoravicius, V., A shape theorem for the spread of an infection, Ann. Math., 167, 3, 701-766 (2008) · Zbl 1202.92077 · doi:10.4007/annals.2008.167.701
[25] Meester, R.; Roy, R., Continuum Percolation (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0858.60092
[26] Minami, N., On the number of vertices with a given degree in a Galton-Watson tree, Adv. Appl. Probab., 37, 1, 229-264 (2005) · Zbl 1075.60113 · doi:10.1239/aap/1113402407
[27] Popov, S. Y.: Frogs and some other interacting random walks models. In: Proceedings of the Conference: Discrete Random Walks, Discrete random walks (Paris, 2003). Discrete Math. Theor. Comput. Sci. Proc., AC, pp. 277-288 (electronic). Assoc. Discrete Math. Theor. Comput. Sci. Nancy (2003) · Zbl 1034.60089
[28] Ramírez, AF; Sidoravicius, V., Asymptotic behavior of a stochastic combustion growth process, J. Eur. Math. Soc. (JEMS), 6, 3, 293-334 (2004) · Zbl 1049.60089 · doi:10.4171/JEMS/11
[29] Williams, FA, Combustion Theory (2018), Boca Raton: CRC Press, Boca Raton
[30] Zhang, Y., Supercritical behaviors in first-passage percolation, Stoch. Process. Appl., 59, 2, 251-266 (1995) · Zbl 0840.60090 · doi:10.1016/0304-4149(95)00051-8
[31] Zhang, Y., Double Behavior of Critical First-Passage Percolation, 143-158 (1999), Boston, MA: Birkhäuser, Boston, MA · Zbl 0941.60094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.