Linear independence of dilogarithmic values. (English) Zbl 1454.11131

Summary: We establish the linear independence over \(\mathbb{Q}\), in both qualitative and quantitative forms, of the four numbers 1, \(\operatorname{Li}_{1}(1/z)=-\log(1-1/z)\), \(\operatorname{Li}_{2}(1/z)\) and \(\operatorname{Li}_{2}(1/(1-z))\), for all integers \(z\geq9\) or \(z\geq8\) and for rationals \(z=s/r\) or \(z=1-s/r\) with \(1<r<s\), where \(s\) is large in comparison with \(r\).


11J72 Irrationality; linear independence over a field
11J82 Measures of irrationality and of transcendence
Full Text: DOI


[1] D. V. Chudnovsky and G. V. Chudnovsky, Generalized hypergeometric functions. Classification of identities and explicit rational approximations, Algebraic methods and q-special functions (Montréal 1996), CRM Proc. Lecture Notes 22, American Mathematical Society, Providence (1999), 59-91. · Zbl 0943.33004
[2] M. Hata, Rational approximations to π and some other numbers, Acta Arith. 63 (1993), no. 4, 335-349. · Zbl 0776.11033
[3] M. Hata, Rational approximations to the dilogarithm, Trans. Amer. Math. Soc. 336 (1993), no. 1, 363-387. · Zbl 0768.11022
[4] M. Hata, The irrationality of \log(1+1/q)\log(1-1/q), Trans. Amer. Math. Soc. 350 (1998), no. 6, 2311-2327. · Zbl 0918.11040
[5] M. Hata, \mathbb{C}^{2}-saddle method and Beukers’ integral, Trans. Amer. Math. Soc. 352 (2000), no. 10, 4557-4583. · Zbl 0996.11048
[6] R. Marcovecchio, Multiple Legendre polynomials in diophantine approximation, Int. J. Number Theory 10 (2014), no. 7, 1829-1855. · Zbl 1315.11064
[7] M.-A. Miladi, Récurrences linéaires et approximations simultanées de type-Padé: applications à l’arithmétique, Thèse, Université des Sciences et Technologies de Lille, 2001.
[8] G. Rhin and C. Viola, On a permutation group related to ζ(2), Acta Arith. 77 (1996), no. 1, 23-56. · Zbl 0864.11037
[9] G. Rhin and C. Viola, The permutation group method for the dilogarithm, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 4 (2005), no. 3, 389-437. · Zbl 1170.11316
[10] H. S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities, Invent. Math. 108 (1992), no. 3, 575-633. · Zbl 0739.05007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.