zbMATH — the first resource for mathematics

The Newton polytope of the discriminant of a quaternary cubic form. (English) Zbl 1454.14144
Summary: We determine the 166104 extremal monomials of the discriminant of a quaternary cubic form. These are in bijection with D-equivalence classes of regular triangulations of the 3-dilated tetrahedron. We describe how to compute these triangulations and their D-equivalence classes in order to arrive at our main result. The computation poses several challenges, such as dealing with the sheer number of triangulations effectively, as well as devising a suitably fast algorithm for computation of a D-equivalence class.
14Q10 Computational aspects of algebraic surfaces
52B55 Computational aspects related to convexity
Full Text: DOI
[1] David Avis - Komei Fukuda,Reverse search for enumeration., Discrete Appl. Math. 65 no. 1-3 (1996), 21-46 (English). · Zbl 0854.68070
[2] David Avis - Charles Jordan,A parallel framework for reverse search usingmts, 2016, PreprintarXiv:1610.07735.
[3] David Avis - Charles Jordan,mplrs: A scalable parallel vertex/facet enumeration code, Mathematical Programming Computation 10 no. 2 (2018), 267-302. · Zbl 1400.90222
[4] Dominic Bunnet - Hanieh Keneshlou,Determinantal representations of the cubic discriminant, this volume.
[5] Lasse Collin,XZ Utils, 2019, https://tukaani.org/xz/.
[6] Jes´us A. De Loera - J¨org Rambau - Francisco Santos,Triangulations, Algorithms and Computation in Mathematics, vol. 25, Springer-Verlag, Berlin, 2010, Structures for algorithms and applications.
[7] Ewgenij Gawrilow - Michael Joswig,polymake: a framework for analyzing convex polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, Birkh¨auser, Basel, 2000, pp. 43-73. · Zbl 0960.68182
[8] I. M. Gel0fand - M. M. Kapranov - A. V. Zelevinsky,Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkh¨auser Boston, Inc., Boston, MA, 1994.
[9] Hiroshi Imai - Tomonari Masada - Fumihiko Takeuchi - Keiko Imai,Enumerating triangulations in general dimensions, Internat. J. Comput. Geom. Appl. 12 no. 6 (2002), 455-480. · Zbl 1045.05006
[10] Charles Jordan - Michael Joswig - Lars Kastner,Parallel enumeration of triangulations., Electron. J. Comb. 25 no. 3 (2018), research paper p3.6, 27 (English). · Zbl 1393.68175
[11] Charles Jordan - Michael Joswig - Lars Kastner,mptopcom, version 1.1, Open source software for the parallel enumeration of triangulations (2019), https://polymake.org/mptopcom.
[12] E. J. Nanson,On the eliminant of a set of quadrics, ternary or quaternary., Proc. R. Soc. Edinburgh 22 (1899), 353-358 (English). · JFM 30.0161.09
[13] J¨org Rambau,TOPCOM: triangulations of point configurations and oriented matroids, Mathematical software (Beijing, 2002), World Sci. Publ., River Edge, NJ, 2002, pp. 330-340. · Zbl 1057.68150
[14] Bernd Sturmfels - Kristian Ranestad,Twenty-seven questions about the cubic surface, this volume. · Zbl 1253.14055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.