×

Load parameter identification for parallel robot manipulator based on extended Kalman filter. (English) Zbl 1454.70003

Summary: Load is the main external disturbance of a parallel robot manipulator. This disturbance will cause dynamic coupling among different degrees of freedom and make heaps of model-based control methods difficult to apply. In order to compensate this disturbance, it is crucial to obtain an accurate dynamic model of load. However, in practice, the load is always uncertain and its dynamic parameters are arduous to know a priori. To cope with this problem, this paper proposes a novel and simple approach to identify the dynamic parameters of load. Firstly, the dynamic model of the parallel robot manipulator with uncertain load is established and the dynamic coupling caused by load is also analyzed. Then, according to the dynamic model, the excitation signal is designed and a weak nonlinear dynamic model is derived. Furthermore, the identification model is presented and the identification algorithm based on the extended Kalman filter is designed. Lastly, numerical simulation results, obtained using a six-degree-of-freedom Gough-Stewart parallel manipulator, demonstrate the good estimation performance of the proposed method.

MSC:

70E60 Robot dynamics and control of rigid bodies
70B15 Kinematics of mechanisms and robots
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Park, J.-H.; Stegall, P.; Agrawal, S. K., Dynamic brace for correction of abnormal postures of the human spine, Proceedings 2015 IEEE International Conference on Robotics and Automation (ICRA)
[2] Merlet, J. P., Parallel Robots (Solid Mechanics and Its Applications), 2091-2127 (2010), Berlin, Germany: Springer, Berlin, Germany
[3] Yang, C.; Wu, H.; Li, Z.; He, W.; Wang, N.; Su, C.-Y., Mind control of a robotic arm with visual fusion technology, IEEE Transactions on Industrial Informatics, 14, 9, 3822-3830 (2018) · doi:10.1109/tii.2017.2785415
[4] Lin, H.; Zhang, T.; Chen, Z.; Song, H.; Yang, C., Adaptive fuzzy gaussian mixture models for shape approximation in robot grasping, International Journal of Fuzzy Systems, 21, 4, 1026-1037 (2019) · doi:10.1007/s40815-018-00604-8
[5] Masarati, P., Computed torque control of redundant manipulators using general-purpose software in real-time, Multibody System Dynamics, 32, 4, 403-428 (2013) · Zbl 1305.70008 · doi:10.1007/s11044-013-9377-4
[6] Niu, X.; Yang, C.; Tian, B.; Li, X.; Han, J., Modal decoupled dynamics feed-forward active force control of spatial multi-dof parallel robotic manipulator, Mathematical Problems in Engineering, 2019 (2019) · Zbl 1435.70027 · doi:10.1155/2019/1835308
[7] He, J.-F.; Jiang, H.-Z.; Tong, Z.-Z., Modal control of a hydraulically driven redundant actuated fully parallel mechanism, Journal of Vibration and Control, 23, 10, 1585-1592 (2017) · doi:10.1177/1077546315596661
[8] Zhao, J.; Wang, Z.; Yang, T.; Xu, J.; Ma, Z.; Wang, C., Design of a novel modal space sliding mode controller for electro-hydraulic driven multi-dimensional force loading parallel mechanism, ISA Transactions, 99, 374-386 (2020) · doi:10.1016/j.isatra.2019.09.018
[9] Yang, C.; Jiang, Y.; He, W.; Na, J.; Li, Z.; Xu, B., Adaptive parameter estimation and control design for robot manipulators with finite-time convergence, IEEE Transactions on Industrial Electronics, 65, 10, 8112-8123 (2018) · doi:10.1109/tie.2018.2803773
[10] Yang, C.; Peng, G.; Cheng, L., Force sensorless admittance control for teleoperation of uncertain robot manipulator using neural networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems (2019) · doi:10.1109/TSMC.2019.2920870
[11] Plummer, A. R.; Guinzio, P. S., Modal control of an electrohydrostatic flight simulator motion system, Proceedings of the ASME 2009 Dynamic Systems and Control Conference
[12] Peng, G.; Yang, C.; He, W., Force sensorless admittance control with neural learning for robots with actuator saturation, IEEE Transactions on Industrial Electronics, 67, 4, 3138-3148 (2019)
[13] Shen, G.; Li, G.; Zang, W.; Li, X.; Tang, Y., Modal space feedforward control for electro-hydraulic parallel mechanism, IEEE Access, 7, 39751-39761 (2019) · doi:10.1109/access.2019.2905650
[14] Pi, Y.; Wang, X., Trajectory tracking control of a 6-DOF hydraulic parallel robot manipulator with uncertain load disturbances, Control Engineering Practice, 19, 2, 185-193 (2011) · doi:10.1016/j.conengprac.2010.11.006
[15] Urrea, C.; Pascal, J., Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot, Computers & Electrical Engineering, 67, 791-806 (2018) · doi:10.1016/j.compeleceng.2016.09.004
[16] Khalil, W.; Gautier, M.; Lemoine, P., Identification of the payload inertial parameters of industrial manipulators, Proceedings 2007 IEEE International Conference on Robotics and Automation · doi:10.1109/ROBOT.2007.364241
[17] Jiang, J.; Zhang, Y., A revisit to block and recursive least squares for parameter estimation, Computers & Electrical Engineering, 30, 5, 403-416 (2004) · Zbl 1073.65053 · doi:10.1016/s0045-7906(04)00021-7
[18] Hu, J.; Xiong, R., Contact force estimation for robot manipulator using semiparametric model and disturbance kalman filter, IEEE Transactions on Industrial Electronics, 65, 4, 3365-3375 (2017)
[19] Jung, J.; Lee, J.; Huh, K., Robust contact force estimation for robot manipulators in three-dimensional space, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220, 9, 1317-1327 (2006) · doi:10.1243/09544062c09005
[20] Rigatos, G. G., Derivative-free nonlinear kalman filtering for mimo dynamical systems: application to multi-dof robotic manipulators, International Journal of Advanced Robotic Systems, 8, 6, 72 (2011) · doi:10.5772/10679
[21] Olsen, M. M.; Swevers, J.; Verdonck, W., Maximum likelihood identification of a dynamic robot model: implementation issues, The International Journal of Robotics Research, 21, 2, 89-96 (2002) · doi:10.1177/027836402760475379
[22] Swevers, J.; Ganseman, C.; Tukel, D. B.; De Schutter, J.; Van Brussel, H., Optimal robot excitation and identification, IEEE Transactions on Robotics and Automation, 13, 5, 730-740 (1997) · doi:10.1109/70.631234
[23] Yuan, J.; Wan, W.; Fu, X., A novel LLSDPso method for nonlinear dynamic parameter identification, Assembly Automation, 37 (2017)
[24] Chen, C.-T.; Renn, J.-C.; Yan, Z.-Y., Experimental identification of inertial and friction parameters for electro-hydraulic motion simulators, Mechatronics, 21, 1, 1-10 (2011) · doi:10.1016/j.mechatronics.2010.07.012
[25] Tian, T.; Jiang, H.; Tong, Z.; He, J.; Huang, Q., An inertial parameter identification method of eliminating system damping effect for a six-degree-of-freedom parallel manipulator, Chinese Journal of Aeronautics, 28, 2, 582-592 (2015) · doi:10.1016/j.cja.2015.01.005
[26] Briot, S.; Gautier, M., Global identification of joint drive gains and dynamic parameters of parallel robots, Multibody System Dynamics, 33, 1, 3-26 (2015) · Zbl 1391.70016 · doi:10.1007/s11044-013-9403-6
[27] Wu, J.; Wang, J.; Wang, L., Identification of dynamic parameter of a 3DOF parallel manipulator with actuation redundancy, Journal of Manufacturing Science and Engineering, 130, 4 (2008) · doi:10.1115/1.2952823
[28] Thanh, T. D.; Kotlarski, J.; Heimann, B.; Ortmaier, T., Dynamics identification of kinematically redundant parallel robots using the direct search method, Mechanism and Machine Theory, 52, 277-295 (2012) · doi:10.1016/j.mechmachtheory.2012.02.002
[29] Wu, J.; Wang, J.; You, Z., An overview of dynamic parameter identification of robots, Robotics and Computer-Integrated Manufacturing, 26, 5, 414-419 (2010) · doi:10.1016/j.rcim.2010.03.013
[30] Mata, V.; Benimeli, F.; Farhat, N.; Valera, A., Dynamic parameter identification in industrial robots considering physical feasibility, Advanced Robotics, 19, 1, 101-119 (2005) · doi:10.1163/1568553053020269
[31] Mata, V.; Farhat, N.; Diaz-Rodriguez, M.; Valera, A.; Page, A., Parallel manipulators towards new applications, I-tech, ch, Dynamic Parameter Identification for Parallel Manipulators, 21-44 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.