×

Viscoelasticity with limiting strain. (English) Zbl 1454.74026

Summary: A self-contained review is given for the development and current state of implicit constitutive modelling of viscoelastic response of materials in the context of strain-limiting theory.

MSC:

74D99 Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials)
74A20 Theory of constitutive functions in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
74A05 Kinematics of deformation
74A10 Stress
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. P. Atul Narayan; K. R. Rajagopal, Unsteady flows of a class of novel generalizations of the Navier-Stokes fluid, Appl. Math. Comput., 219, 9935-9946 (2013) · Zbl 1291.76098
[2] B. Benešová; M. Kružík; A. Schlömerkemper, A note on locking materials and gradient polyconvexity, Math. Mod. Methods Appl. Sci., 28, 2367-2401 (2018) · Zbl 1411.49007
[3] C. Bridges; K. R. Rajagopal, Implicit constitutive models with a thermodynamic basis: A study of stress concentration, Z. Angew. Math. Phys., 66, 191-208 (2015) · Zbl 1317.74008
[4] M. Bulíček; J. Málek; K. Rajagopal; E. Süli, On elastic solids with limiting small strain: Modelling and analysis, EMS Surv. Math. Sci., 1, 283-332 (2014) · Zbl 1314.35184
[5] M. Bulíček; J. Málek; E. Süli, Analysis and approximation of a strain-limiting nonlinear elastic model, Math. Mech. Solids, 20, 92-118 (2015) · Zbl 1327.74032
[6] R. Bustamante, Some topics on a new class of elastic bodies, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465, 1377-1392 (2009) · Zbl 1186.74016
[7] R. Bustamante; K. R. Rajagopal, A note on plain strain and stress problems for a new class of elastic bodies, Math. Mech. Solids, 15, 229-238 (2010) · Zbl 1257.74022
[8] R. Bustamante; K. R. Rajagopal, Solutions of some simple boundary value problems within the context of a new class of elastic materials, Int. J. Nonlinear Mech., 46, 376-386 (2011)
[9] R. Bustamante; D. Sfyris, Direct determination of stresses from the stress equations of motion and wave propagation for a new class of elastic bodies, Math. Mech. Solids, 20, 80-91 (2015) · Zbl 1327.74080
[10] J. C. Criscione; K. R. Rajagopal, On the modeling of the non-linear response of soft elastic bodies, Int. J. Nonlinear Mech., 56, 20-24 (2013)
[11] F. Demengel; P. Suquet, On locking materials, Acta Appl. Math., 6, 185-211 (1986) · Zbl 0594.73037
[12] V. K. Devendiran; R. K. Sandeep; K. Kannan; K. R. Rajagopal, A thermodynamically consistent constitutive equation for describing the response exhibited by several alloys and the study of a meaningful physical problem, Int. J. Solids and Struct., 108, 1-10 (2017)
[13] H. A. Erbay; Y. Şengül, Traveling waves in one-dimensional non-linear models of strain-limiting viscoelasticity, Int. J. Nonlinear Mech., 77, 61-68 (2015)
[14] H. A. Erbay and Y. Şengül, A thermodynamically consistent stress-rate type model of one-dimensional strain-limiting viscoelasticity, Z. Angew. Math. Phys., accepted. · Zbl 1435.74007
[15] H. A. Erbay, A. Erkip and Y. Şengül, Local existence of solutions to the initial-value problem for one-dimensional strain-limiting viscoelasticity, submitted. · Zbl 1453.35048
[16] N. Gelmetti; E. Süli, Spectral approximation of a strain-limiting nonlinear elastic model, Mat. Vesnik, 71, 63-89 (2019)
[17] F. Golay; P. Seppecher, Locking materials and the topology of optimal shapes, Eur. J. Mech. A Solids, 20, 631-644 (2001) · Zbl 1014.74058
[18] K. Gou; M. Mallikarjuna; K. R. Rajagopal; J. R. Walton, Modeling fracture in the context of a strain-limiting theory of elasticity: A single plane-strain crack, Int. J. Eng. Sci., 88, 73-82 (2015) · Zbl 1423.74824
[19] Y. L. Hao, S. J. Li, S. Y. Sun, C. Y. Zheng, Q. M. Hu and R. Yang, Super-elastic titanium alloy with unstable plastic deformation, Appl. Physc. Lett., 87 (2005), 091906.
[20] Y. L. Hao, S. J. Li, S. Y. Sun, C. Y. Zheng, Q. M. Hu and R. Yang, Super-elastic titanium alloy with unstable plastic deformation, Appl. Physc. Lett., 87 (2005), 091906.
[21] F. Q. Hou; S. J. Li; Y. L. Hao; R. Yang, Nonlinear elastic deformation behaviour of Ti-30Nb-12Zr alloys, Scr. Mater., 63, 54-57 (2010) · Zbl 1409.74004
[22] H. Itou; V. A. Kovtunenko; K. R. Rajagopal, Contacting crack faces within the context of bodies exhibiting limiting strains, JSIAM Letters, 9, 61-64 (2017) · Zbl 1371.74245
[23] H. Itou; V. A. Kovtunenko; K. R. Rajagopal, Nonlinear elasticity with limiting small strain for cracks subject to non-penetration, Math. Mech. Solids, 22, 1334-1346 (2017) · Zbl 1404.74028
[24] H. Itou; V. A. Kovtunenko; K. R. Rajagopal, On the states of stress and strain adjacent to a crack in a strain-limiting viscoelastic body, Math. Mech. Solids, 23, 433-444 (2018) · Zbl 1411.35249
[25] H. Itou; V. A. Kovtunenko; K. R. Rajagopal, Crack problem within the context of implicitly constituted quasi-linear viscoelasticity, Math. Mod. Meth. Appl. Sci., 29, 355-372 (2019) · Zbl 1456.74017
[26] K. Kannan; K. R. Rajagopal; G. Saccomandi, Unsteady motions of a new class of elastic solids, Wave Motion, 51, 833-843 (2014)
[27] V. Kulvait; J. Málek; K. R. Rajagopal, Anti-plane stress state of a plate with a V-notch for a new class of elastic solids, Int. J. Fract., 179, 59-73 (2013)
[28] V. Kulvait; J. Málek; K. R. Rajagopal, Modeling gum metal and other newly developed titanium alloys within a new class of constitutive relations for elastic bodies, Arch. Mech., 69, 223-241 (2017) · Zbl 1415.74011
[29] V. Kulvait; J. Málek; K. R. Rajagopal, The state of stress and strain adjacent to notches in a new class of nonlinear elastic bodies, J. Elast., 135, 375-397 (2019) · Zbl 1524.74299
[30] A. B. Magan; D. P. Mason; C. Harley, Two-dimensional nonlinear stress and displacement waves for a new class of constitutive equations, Wave Motion, 77, 156-185 (2018)
[31] T. Mai; J. R. Walton, On monotonicity for strain-limiting theories of elasticity, Math. Mech. Solids, 20, 121-139 (2014) · Zbl 1391.74110
[32] R. Meneses; O. Orellana; R. Bustamante, A note on the wave equation for a class of constitutive relations for nonlinear elastic bodies that are not Green elastic, Math. Mech. Solids, 23, 148-158 (2018) · Zbl 1137.74013
[33] J. Merodio; K. R. Rajagopal, On constitutive equations for anisotropic nonlinearly viscoelastic solids, Math. Mech. Solids, 12, 131-147 (2007) · Zbl 1317.74024
[34] A. Mielke; C. Ortner; Y. Şengül, An approach to nonlinear viscoelasticity via metric gradient flows, SIAM J. Math. Anal., 46, 1317-1347 (2014) · Zbl 1012.74054
[35] A. Mielke; F. Theil; V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Rational Mech. Anal., 162, 137-177 (2002) · Zbl 1191.35159
[36] A. Mielke; M. Thomas, Damage of nonlinearly elastic materials at small strain-existence and regularity results, Z. Angew. Math. Mech., 90, 88-112 (2010) · Zbl 1286.74024
[37] A. Mielke; L. Truskinovsky, From discrete visco-elasticity to continuum rate-independent plasticity: Rigorous results, Arch. Rational Mech. Anal., 203, 577-619 (2012) · Zbl 1360.74140
[38] S. Montero; R. Bustamante; A. Ortiz-Bernardin, A finite element analysis of some boundary value problems for a new type of constitutive relation for elastic bodies, Acta Mech., 227, 601-615 (2016) · Zbl 1291.74051
[39] A. Muliana; K. R. Rajagopal; A. S. Wineman, A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials, Acta Mech., 224, 2169-2183 (2013)
[40] N. Nagasako; R. Asahi; J. Hafner, First-principles study of Gum-Metal alloys: Mechanism of ideal strength, R & D Review of Toyota CRDL, 44, 61-68 (2013) · Zbl 1356.74122
[41] A. Ortiz; R. Bustamante; K. R. Rajagopal, A numerical study of a plate with a hole for a new class of elastic bodies, Acta Mech., 223, 1971-1981 (2012)
[42] A. Ortiz-Bernardin; R. Bustamante; K. R. Rajagopal, A numerical study of elastic bodies that are described by constitutive equations that exhibit limited strains, Int. J. Solids and Struct., 51, 875-885 (2014)
[43] N. Payne; K. Pochiraju, Methodologies for constitutive model parameter identification for strain locking materials, Mech. Mater., 134, 30-37 (2019) · Zbl 0101.17202
[44] A. Phillips, The theory of locking materials, Trans. Soc. Rheol., 3, 13-26 (1959) · Zbl 0098.37702
[45] W. Prager, On ideal locking materials, Trans. Soc. Rheol., 1, 169-175 (1957) · Zbl 1099.74009
[46] K. R. Rajagopal, On implicit constitutive theories, Appl. Math., 48, 279-319 (2003) · Zbl 1097.76009
[47] K. R. Rajagopal, On implicit constitutive theories for fluids, J. Fluid Mech., 550, 243-249 (2006) · Zbl 1113.74006
[48] K. R. Rajagopal, The elasticity of elasticity, Z. Angew. Math. Phys., 58, 309-317 (2007) · Zbl 1371.74050
[49] K. R. Rajagopal, On a new class of models in elasticity, J. Math. Comp. Appl., 15, 506-528 (2010) · Zbl 1269.74026
[50] K. R. Rajagopal, Non-linear elastic bodies exhibiting limiting small strain, Math. Mech. Solids, 16, 122-139 (2011) · Zbl 1269.74014
[51] K. R. Rajagopal, Conspectus of concepts of elasticity, Math. Mech. Solids, 16, 536-562 (2011) · Zbl 1401.74045
[52] K. R. Rajagopal, On the nonlinear elastic response of bodies in the small strain range, Acta Mech., 225, 1545-1553 (2014)
[53] K. R. Rajagopal, A note on the classification of anisotropy of bodies defined by implicit constitutive relations, Mech. Res. Comm., 64, 38-41 (2015)
[54] K. R. Rajagopal, A note on the linearization of the constitutive relations of non-linear elastic bodies, Mech. Res. Comm., 93, 132-137 (2018) · Zbl 1308.74078
[55] K. R. Rajagopal; G. Saccomandi, Circularly polarized wave propagation in a class of bodies defined by a new class of implicit constitutive relations, Z. Angew. Math. Phys., 65, 1003-1010 (2014) · Zbl 1108.74344
[56] K. R. Rajagopal; G. Saccomandi, Shear waves in a class of nonlinear viscoelastic solids, Quart. J. Mech. Appl. Math., 56, 311-326 (2003) · Zbl 0960.76005
[57] K. R. Rajagopal; A. R. Srinivasa, A thermodynamic frame work for rate type fluid models, J. Non-Newton. Fluid Mech., 88, 207-227 (2000) · Zbl 1041.74002
[58] K. R. Rajagopal; A. R. Srinivasa, On thermomechanical restrictions of continua, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460, 631-651 (2004) · Zbl 1186.74008
[59] K. R. Rajagopal; A. R. Srinivasa, On the nature of constraints for continua undergoing dissipative processes, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461, 2785-2795 (2005) · Zbl 1129.74010
[60] K. R. Rajagopal; A. R. Srinivasa, On the response of non-dissipative solids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463, 357-367 (2007) · Zbl 1258.76024
[61] K. R. Rajagopal; A. R. Srinivasa, On the development of fluid models of the differential type within a new thermodynamic framework, Mech. Res. Commun., 35, 483-489 (2008) · Zbl 1219.74004
[62] K. R. Rajagopal; A. R. Srinivasa, A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467, 39-58 (2011)
[63] K. R. Rajagopal; A. R. Srinivasa, An implicit thermomechanical theory based on a Gibbs potential formulation for describing the response of thermoviscoelastic solids, Int. J. Eng. Sci., 70, 15-28 (2013) · Zbl 1283.74074
[64] K. R. Rajagopal; J. R. Walton, Modeling fracture in the context of a strain-limiting theory of elasticity: A single anti-plane shear crack, Int. J. Fract., 169, 39-48 (2011)
[65] K. R. Rajagopal; A. S. Wineman, A quasi-correspondence principle for quasi-linear viscoelastic solids, Mech. Time-Depend. Mater., 12, 1-14 (2008) · Zbl 0064.42101
[66] R. S. Rivlin, Further remarks on the stress-deformation relations for isotropic materials, Indiana Univ. Math. J., 4, 681-702 (1955)
[67] T. Saito; T. Furuta; J. H. Hwang; S. Kuramoto; K. Nishino; N. Suzuki; R. Chen; A. Yamada; K. Ito; Y. Seno; T. Nonaka; H. Ikehata; N. Nagasako; C. Iwamoto; Y. Ikuhara; T. Sakuma, Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism, Science, 300, 464-467 (2003)
[68] N. Sakaguch; M. Niinomi; T. Akahori, Tensile deformation behavior of Ti-Nb-Ta-Zr biomedical alloys, Mater. Trans., 45, 1113-1119 (2004)
[69] U. Saravanan, Advanced Solid Mechanics, McGraw-Hill Inc., Indian Institute of Technology Madras, 2013.
[70] R. J. Talling; R. J. Dashwood; M. Jackson; D. Dye, On the mechanism of superelasticity in Gum metal, Acta Mater., 57, 1188-1198 (2009)
[71] Y. Şengül, On one-dimensional strain-limiting viscoelasticity with an arctangent type nonlinearity, submitted. · Zbl 0188.58803
[72] R. J. Talling; R. J. Dashwood; M. Jackson; D. Dye, On the mechanism of superelasticity in Gum metal, Acta Mater., 57, 1188-1198 (2009)
[73] C. Truesdell, The Elements of Continuum Mechanics, Springer-Verlag New York, Inc., New York, 1966.
[74] M. Zappalorto; F. Berto; K. R. Rajagopal, On the anti-plane state of stress near pointed or sharply radiused notches in strain limiting elastic materials: Closed form solution and implications for fracture assessements, Int. J. Fract., 199, 169-184 (2016)
[75] E. Withey; M. Jin; A. Minor; S. Kuramoto; D. C. Chrzan; J. W. Morris, The deformation of “Gum Metal” in nanoindentation, Mater. Sci. Eng. A, 493, 26-32 (2008)
[76] S. Q. Zhang; S. J. Li; M. T. Jia; Y. L. Hao; R. Yang, Fatigue properties of a multifunctional titanium alloy exhibiting nonlinear elastic deformation behavior, Scr. Mater., 60, 733-736 (2009)
[77] M. Zappalorto; F. Berto; K. R. Rajagopal, On the anti-plane state of stress near pointed or sharply radiused notches in strain limiting elastic materials: Closed form solution and implications for fracture assessements, Int. J. Fract., 199, 169-184 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.