×

Optimal control for networked control systems with Markovian packet losses. (English) Zbl 1454.93007

Summary: This paper is concerned with the optimal output feedback control problem for networked control systems (NCSs) with Markovian packet losses. In this paper, the packet losses occur both between the sensor and controller and between the controller and actuator. Moreover, the packet loss channels are described with two-state Markov chains. Since the precise state information cannot be obtained, thus an optimal recursive estimator is designed. Furthermore, by adopting the dynamic programming approach, we derive the optimal output feedback control, which is based on the solution to a given modified Riccati equation. The obtained results can be seen as an important implementation of the control theory for NCSs with unreliable communication channels.

MSC:

93A14 Decentralized systems
93E20 Optimal stochastic control
93B53 Observers
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yang, T. C., Networked control system: a brief survey, IEE Proceedings - Control Theory and Applications, 153, 4, 403-412 (2006) · doi:10.1049/ip-cta:20050178
[2] Hespanha, J. P.; Naghshtabrizi, P.; Xu, Y., A survey of recent results in networked control systems, Proceedings of the IEEE, 95, 1, 138-162 (2007) · doi:10.1109/jproc.2006.887288
[3] Meng, C.; Wang, T.; Chou, W.; Luan, S.; Zhang, Y.; Tian, Z., Remote surgery case: robot-assisted teleneurosurgery, International Conference on Robotics and Automation, 1, 819-823 (2004)
[4] Seiler, P.; Sengupta, R., Analysis of communication losses in vehicle control problems, American Control Conference, 2, 1491-1496 (2001)
[5] Ji, Z.; Lin, H.; Cao, S.; Qi, Q.; Ma, H., The complexity in complete graphic characterizations of multiagent controllability, IEEE Transactions on Systems, Man, and Cybernetics, 99, 1-13 (2020)
[6] Murray, R. M.; Astrom, K.; Boyd, S.; Brockett, R.; Stein, G., Future directions in control in an information-rich world, IEEE Control Systems Magazine, 23, 2, 20-33 (2003)
[7] Bo, C.; Yu, L.; Zhang, W., Optimal filtering for linear discrete state delay systems, Journal of Systems Ence and Mathematical Ences, 30, 6, 782-791 (2010) · Zbl 1240.93321
[8] Qi, Q.; Zhang, H., Output feedback control and stabilization for multiplicative noise systems with intermittent observations, IEEE Transactions on Cybernetics, 48, 7, 2128-2138 (2018) · doi:10.1109/tcyb.2017.2728078
[9] Qi, Q.; Ju, P.; Zhang, H.; Cui, P., Optimal control and stabilisation for large-scale systems with imposed constraints, IET Control Theory & Applications, 14, 10, 1300-1307 (2020) · doi:10.1049/iet-cta.2018.6204
[10] Liu, X.; Goldsmith, A., Kalman filtering with partial observation losses, Conference on Decision and Control, 4, 4180-4186 (2004)
[11] Schenato, L.; Sinopoli, B.; Franceschetti, M.; Poolla, K.; Sastry, S. S., Foundations of control and estimation over lossy networks, Proceedings of the IEEE, 95, 1, 163-187 (2007) · doi:10.1109/jproc.2006.887306
[12] Zou, L.; Wang, Z.; Han, Q.-L.; Zhou, D., Moving horizon estimation for networked time-delay systems under round-robin protocol, IEEE Transactions on Automatic Control, 64, 12, 5191-5198 (2019) · Zbl 1482.93358 · doi:10.1109/tac.2019.2910167
[13] Zou, L.; Wang, Z.; Zhou, D., Moving horizon estimation with non-uniform sampling under component-based dynamic event-triggered transmission, Automatica, 120 (2020) · Zbl 1448.93191 · doi:10.1016/j.automatica.2020.109154
[14] Zou, L.; Wang, Z.; Hu, J.; Zhou, D., Moving horizon estimation with unknown inputs under dynamic quantization effects, IEEE Transactions on Automatic Control, 1 (2020) · Zbl 07320107 · doi:10.1109/TAC.2020.2968975
[15] Zhang, D.; Zhang, Y., Fault Detection for uncertain delta operator systems with two-channel packet dropouts via a switched systems approach, Journal of Systems Science and Complexity, 33, 5, 1-23 (2020) · Zbl 1455.93106
[16] Zhang, W.; Yu, L., On improved delay-dependent robust stability criteria for uncertain discrete-time systems with multiple state delays, Dynamics of Continuous Discrete and Impulsive Systems, 13, 1, 1246-1253 (2006)
[17] Mo, Y.; Garone, E.; Sinopoli, B., LQG control with markovian packet loss, Proceedings of the European Control Conference
[18] Qi, Q.; Zhang, H., Output feedback control and stabilization for networked control systems with packet losses, IEEE Transactions on Cybernetics, 47, 8, 2223-2234 (2017) · doi:10.1109/tcyb.2016.2568218
[19] Wang, D.; Wang, J. L.; Wang, W., \( H_\infty\) controller design of networked control systems with markov packet dropouts, IEEE Transactions on Systems, Man, and Cybernetics, 43, 3, 689-697 (2013)
[20] Zhou, J.; Zhang, D., H-infinity fault detection for delta operator systems with random two-channels packet losses and limited communication, IEEE Access, 7, 94448-94459 (2019) · doi:10.1109/access.2019.2928306
[21] Li, H.; Han, C.; Zhang, H., Stabilization for networked control systems with simultaneous input delay and markovian packet losses, Optimization and Control (2018), https://arxiv.org/abs/1808.06777
[22] Wu, J.; Chen, T., Design of networked control systems with packet dropouts, IEEE Transactions on Automatic Control, 52, 7, 1314-1319 (2007) · Zbl 1366.93215 · doi:10.1109/tac.2007.900839
[23] Peng, C.; Tian, Y.-C.; Yue, D., Output feedback control of discrete-time systems in networked environments, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 41, 1, 185-190 (2011) · doi:10.1109/tsmca.2010.2055155
[24] Qu, J.; Ji, Z.; Lin, C.; Yu, H., Fast consensus seeking on networks with antagonistic interactions, Complexity, 2018 (2018) · Zbl 1407.93030 · doi:10.1155/2018/7831317
[25] Tan, C.; Li, L.; Zhang, H., Stabilization of networked control systems with both network-induced delay and packet dropout, Automatica, 59, 194-199 (2015) · Zbl 1326.93127 · doi:10.1016/j.automatica.2015.06.026
[26] Shah, D.; Mehta, A., Discrete-time sliding mode controller subject to real-time fractional delays and packet losses for networked control system, International Journal of Control, Automation and Systems, 15, 6, 2690-2703 (2017) · doi:10.1007/s12555-016-0761-8
[27] Qi, Q.; Xie, L.; Zhang, H., Optimal control for stochastic systems with multiple controllers of different information structures, IEEE Transactions on Automatic Control, 1 (2020) · Zbl 1471.93284 · doi:10.1109/TAC.2020.3035625
[28] Qi, Q.; Zhang, H.; Wu, Z., Stabilization control for linear continuous-time mean-field systems, IEEE Transactions on Automatic Control, 64, 8, 3461-3468 (2019) · Zbl 1482.93679 · doi:10.1109/tac.2018.2881141
[29] Shah, D.; Mehta, A.; Patel, K.; Bartoszewicz, A., Event-triggered discrete higher-order SMC for networked control system having network irregularities, IEEE Transactions on Industrial Informatics, 16, 11, 6837-6847 (2020)
[30] Song, H.; Yu, L.; Zhang, W., Guaranteed cost control of networked control systems with packet dropouts, Control Theory and Technology, 25, 5, 913-916 (2008)
[31] Joshi, S., On optimal control of linear systems in the presence of multiplicative noise, IEEE Transactions on Aerospace and Electronic Systems, AES-12, 1, 80-85 (1976) · doi:10.1109/taes.1976.308221
[32] Kalman, R. E., A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82, 1, 35-45 (1960) · doi:10.1115/1.3662552
[33] Kalman, R. E.; Bucy, R. S., New results in linear filtering and prediction theory, Journal of Basic Engineering, 83, 1, 95-108 (1961) · doi:10.1115/1.3658902
[34] Nahi, N., Optimal recursive estimation with uncertain observation, IEEE Transactions on Information Theory, 15, 4, 457-462 (1969) · Zbl 0174.51102 · doi:10.1109/tit.1969.1054329
[35] Shu, Y.; Yu, L.; Zhang, W., Estimator-based control of networked systems with packet-dropouts, International Journal of Innovative Computing, Information and Control: IJICIC, 6, 6, 2737-2747 (2010)
[36] do Valle Costa, O. L.; Fragoso, M. M. D.; Marques, R. P., Discrete-Time Markov Jump Linear Systems (2005), Berlin, Germany: Springer, Berlin, Germany · Zbl 1081.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.