×

Asymptotic shear and the intrinsic conformal geometry of null-infinity. (English) Zbl 1455.83011

Summary: In this article, we propose a new geometrization of the radiative phase space of asymptotically flat space-times: we show that the geometry induced on null-infinity by the presence of gravitational waves can be understood to be a generalization of the tractor calculus of conformal manifolds adapted to the case of degenerate conformal metrics. It follows that the whole formalism is, by construction, manifestly conformally invariant. We first show that a choice of asymptotic shear amounts to a choice of linear differential operator of order 2 on the bundle of scales of null-infinity. We refer to these operators as Poincaré operators. We then show that Poincaré operators are in one-to-one correspondence with a particular class of tractor connections, which we call “null-normal” (they generalize the normal tractor connection of conformal geometry). The tractor curvature encodes the presence of gravitational waves, and the non-uniqueness of flat null-normal tractor connections corresponds to the “degeneracy of gravity vacua” that has been extensively discussed in the literature. This work thus brings back the investigation of the radiative phase space of gravity to the study of (Cartan) connections and associated bundles. This should allow us, in particular, to proliferate invariants of the phase space.
©2020 American Institute of Physics

MSC:

83C35 Gravitational waves
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
53Z05 Applications of differential geometry to physics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bondi, H.; Van der Burg, M. G. J.; Metzner, A. W. K., Gravitational waves in general relativity, VII. Waves from axi-symmetric isolated system, Proc. R. Soc. London, Ser. A, 269, 21-52 (1962) · Zbl 0106.41903 · doi:10.1098/rspa.1962.0161
[2] Sachs, R. K., Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time, Proc. R. Soc. London, Ser. A, 270, 103-126 (1962) · Zbl 0101.43605 · doi:10.1098/rspa.1962.0206
[3] Barnich, G.; Troessaert, C., Aspects of the BMS/CFT correspondence, J. High Energy Phys., 2010, 62 · Zbl 1287.83043 · doi:10.1007/jhep05(2010)062
[4] Mädler, T.; Winicour, J., Bondi-Sachs formalism, Scholarpedia, 11, 12, 33528 (2016) · doi:10.4249/scholarpedia.33528
[5] Ruzziconi, R., Asymptotic symmetries in the gauge fixing approach and the BMS group, 003 (2020), Proceedings of Science
[6] Strominger, A., On BMS invariance of gravitational scattering, J. High Energy Phys., 2014, 152 · Zbl 1392.81215 · doi:10.1007/jhep07(2014)152
[7] He, T.; Lysov, V.; Mitra; Strominger, A., BMS supertranslations and Weinberg’s soft graviton theorem, J. High Energy Phys., 2015, 151 · Zbl 1388.83261 · doi:10.1007/jhep05(2015)151
[8] Strominger, A.; Zhiboedov, A., Gravitational memory, BMS supertranslations and soft theorems, J. High Energy Phys., 2016, 86 · Zbl 1388.83072 · doi:10.1007/jhep01(2016)086
[9] Strominger, A., Lectures on the Infrared Structure of Gravity and Gauge Theory (2018), Princeton University Press · Zbl 1408.83003
[10] Newman, E.; Penrose, R., An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys., 3, 566-578 (1962) · Zbl 0108.40905 · doi:10.1063/1.1724257
[11] Penrose, R., Zero rest-mass fields including gravitation: Asymptotic behaviour, Proc. R. Soc. London, Ser. A, 284, 159-203 (1965) · Zbl 0129.41202 · doi:10.1098/rspa.1965.0058
[12] Penrose, R., Conformal treatment of infinity (republication), Gen. Relat. Gravitation, 43, 901-922 (2011) · Zbl 1215.83019 · doi:10.1007/s10714-010-1110-5
[13] Tamburino, L. A.; Winicour, J. H., Gravitational fields in finite and conformal Bondi frames, Phys. Rev., 150, 1039-1053 (1966) · doi:10.1103/physrev.150.1039
[14] Tafel, J.; Pukas, S., Comparison of the Bondi-Sachs and Penrose approaches to asymptotic flatness, Classical Quantum Gravity, 17, 1559-1570 (2000) · Zbl 0957.83020 · doi:10.1088/0264-9381/17/6/316
[15] Frauendiener, J., Conformal infinity, Living Rev. Relat., 7, 1 (2004) · Zbl 1070.83006 · doi:10.12942/lrr-2004-1
[16] Friedrich, H., Geometric asymptotics and beyond, Surv. Differ. Geom., 20, 1, 37-74 (2015) · Zbl 1339.83007 · doi:10.4310/sdg.2015.v20.n1.a3
[17] Frauendiener, J.; Rowe, D. E.; Sauer, T.; Walter, S. A., Conformal infinity—Development and applications, Beyond Einstein: Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century, 451-473 (2018), Springer: Springer, New York, NY · Zbl 1402.83006
[18] Geroch, R., Asymptotic structure of space-time, Asymptotic Structure of Space-Time, 1-105 (1977), Springer US: Springer US, Boston, MA
[19] Ashtekar, A., Radiative degrees of freedom of the gravitational field in exact general relativity, J. Math. Phys., 22, 2885-2895 (1981) · doi:10.1063/1.525169
[20] Ashtekar, A.; Streubel, M., Symplectic geometry of radiative modes and conserved quantities at null infinity, Proc. R. Soc. London, Ser. A, 376, 585-607 (1981) · doi:10.1098/rspa.1981.0109
[21] Ashtekar, A.; Magnon-Ashtekar, A., On the symplectic structure of general relativity, Commun. Math. Phys., 86, 55-68 (1982) · Zbl 0504.53049 · doi:10.1007/bf01205661
[22] Ashtekar, A., Asymptotic Quantization: 1984 Naples Lectures (1987), Bibliopolis, Naples, Italy · Zbl 0621.53064
[23] Ashtekar, A., Geometry and physics of null infinity, Surv. Differ. Geom., 20, 1, 99-122 (2015) · Zbl 1339.83002 · doi:10.4310/sdg.2015.v20.n1.a5
[24] Ashtekar, A.; Campiglia, M.; Laddha, A., Null infinity, the BMS group and infrared issues, Gen. Relat. Gravitation, 50, 140 (2018) · Zbl 1403.83012 · doi:10.1007/s10714-018-2464-3
[25] Duval, C.; Gibbons, G. W.; Horvathy, P. A., Conformal Carroll groups and BMS symmetry, Classical Quantum Gravity, 31, 092001 (2014) · Zbl 1291.83084 · doi:10.1088/0264-9381/31/9/092001
[26] Duval, C.; Gibbons, G. W.; Horvathy, P. A., Conformal Carroll groups, J. Phys. A: Math. Theor., 47, 335204 (2014) · Zbl 1297.83028 · doi:10.1088/1751-8113/47/33/335204
[27] Newman, E. T., Heaven and its properties, Gen. Relat. Gravitation, 7, 107-111 (1976) · doi:10.1007/bf00762018
[28] Hansen, R. O.; Newman, E. T.; Roger, P.; Tod, K. P., The metric and curvature properties of H-space, Proc. R. Soc. London, Ser. A, 363, 445-468 (1978) · Zbl 0391.53014 · doi:10.1098/rspa.1978.0177
[29] Ko, M.; Ludvigsen, M.; Newman, E. T.; Tod, K. P., The theory of H-space, Phys. Rep., 71, 51-139 (1981) · Zbl 0567.53058 · doi:10.1016/0370-1573(81)90104-6
[30] Adamo, T. M.; Newman, E. T., The generalized good cut equation, Classical Quantum Gravity, 27, 245004 (2010) · Zbl 1208.83021 · doi:10.1088/0264-9381/27/24/245004
[31] Adamo, T. M.; Newman, E. T.; Kozameh, C., Null geodesic congruences, asymptotically-flat spacetimes and their physical interpretation, Living Rev. Relat., 15, 1 (2012) · Zbl 1316.83002 · doi:10.12942/lrr-2012-1
[32] Herfray, Y., The tractor geometry of asymptotically flat space-times (2020)
[33] Korovin, Y., Holographic dictionary at SCRI (2020)
[34] Bailey, T. N.; Eastwood, M. G.; Gover, A. R., Thomas’s structure bundle for conformal, projective and related structures, Rocky Mt. J. Math., 24, 4, 1191-1217 (1994) · Zbl 0828.53012 · doi:10.1216/rmjm/1181072333
[35] Sharpe, R., Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program (1997), Springer-Verlag: Springer-Verlag, New York · Zbl 0876.53001
[36] Čap, A.; Schichl, H., Parabolic geometries and canonical Cartan connections, Hokkaido Math. J., 29, 453-505 (2000) · Zbl 0996.53023 · doi:10.14492/hokmj/1350912986
[37] Cap, A.; Slovak, J., Parabolic Geometries I: Background and General Theory (2009), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1183.53002
[38] Gover, A. R., Almost conformally Einstein manifolds and obstructions · Zbl 1121.53032
[39] Gover, A. R., Conformal Dirichlet-Neumann maps and Poincaré-Einstein manifolds, Symmetry, Integrability Geom.: Methods Appl., 3, 100 (2007) · Zbl 1145.53018 · doi:10.3842/sigma.2007.100
[40] Gover, A. R., Almost Einstein and poincaré-Einstein manifolds in Riemannian signature, J. Geom. Phys., 60, 182-204 (2010) · Zbl 1194.53038 · doi:10.1016/j.geomphys.2009.09.016
[41] Curry, S. N.; Gover, A. R.; Daudé, T.; Häfner, D.; Nicolas, J., An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, Asymptotic Analysis in General Relativity, 86-170 (2018), Cambridge University Press · Zbl 1416.83014
[42] Gover, A. R.; Waldron, A., Boundary calculus for conformally compact manifolds, Indiana Univ. Math. J., 63, 1, 119-163 (2014) · Zbl 1310.53060 · doi:10.1512/iumj.2014.63.5057
[43] Gover, A. R.; Latini, E.; Waldron, A., Poincare-Einstein Holography for Forms via Conformal Geometry in the Bulk, 235-1106 (2015), American Mathematical Society · Zbl 1326.53057
[44] Gover, A. R.; Waldron, A., A calculus for conformal hypersurfaces and new higher Willmore energy functionals, Adv. Geometry, 10, 1, 29-60 (2020) · Zbl 1434.53062 · doi:10.1515/advgeom-2019-0016
[45] Fefferman, C.; Graham, C., Conformal invariants, Élie Cartan et Les Mathématiques d’aujourd’hui, Lyon, 25-29 Juin 1984, S131 in Astérisque, 95-116 (1985), Société Mathématique de France · Zbl 0602.53007
[46] Fefferman, C.; Graham, C., The Ambient Metric (2012), Princeton University Press · Zbl 1243.53004
[47] Čap, A.; Gover, A., Standard tractors and the conformal ambient metric construction, Ann. Global Anal. Geom., 24, 231-259 (2003) · Zbl 1039.53021 · doi:10.1023/A:1024726607595
[48] Calderbank, D., Möbius structures and two dimensional Einstein Weyl geometry, J. Angew. Math. (Crelles J.), 1998, 504, 37-53 (2006) · Zbl 0909.53029 · doi:10.1515/crll.1998.111
[49] Burstall, F.; Calderbank, D., Conformal submanifold geometry I-III (2010)
[50] Lévy-Leblond, J.-M., Une nouvelle limite non-relativiste du groupe de Poincaré, Ann. l’I.H. Phys. Théo., 3, 1, 1-12 (1965) · Zbl 0143.22601
[51] Duval, C.; Gibbons, G. W.; Horvathy, P. A.; Zhang, P. M., Carroll versus Newton and Galilei: Two dual non-Einsteinian concepts of time, Classical Quantum Gravity, 31, 085016 (2014) · Zbl 1295.83006 · doi:10.1088/0264-9381/31/8/085016
[52] Penrose, R.; Rindler, W., Spinors and Space-Time: Volume 1 (1984), Cambridge University Press · Zbl 0538.53024
[53] Sachs, R. K., Asymptotic symmetries in gravitational theory, Phys. Rev., 128, 6, 2851-2864 (1962) · Zbl 0114.21202 · doi:10.1103/physrev.128.2851
[54] Barnich, G.; Troessaert, C., Finite BMS transformations, J. High Energy Phys., 2016, 167 · Zbl 1388.83514 · doi:10.1007/jhep03(2016)167
[55] Gover, A. R., Invariant theory and calculus for conformal geometries, Adv. Math., 163, 206-257 (2001) · Zbl 1004.53010 · doi:10.1006/aima.2001.1999
[56] Gover, A. R.; Peterson, L. J., Conformally invariant powers of the Laplacian, Q-curvature, and tractor calculus, Commun. Math. Phys., 235, 339-378 (2003) · Zbl 1022.58014 · doi:10.1007/s00220-002-0790-4
[57] Graham, C. R.; Jenne, R.; Mason, L. J.; Sparling, G. A. J., Conformally invariant powers of the Laplacian, I: Existence, J. London Math. Soc., s2-46, 3, 557-565 (1992) · Zbl 0726.53010 · doi:10.1112/jlms/s2-46.3.557
[58] Barnich, G.; Troessaert, C., BMS charge algebra, J. High Energy Phys., 2011, 105 · Zbl 1306.83002 · doi:10.1007/jhep12(2011)105
[59] Henneaux, M.; Troessaert, C., BMS group at spatial infinity: The Hamiltonian (ADM) approach, J. High Energy Phys., 2018, 147 · Zbl 1388.83015 · doi:10.1007/jhep03(2018)147
[60] De Paoli, E.; Speziale, S., A gauge-invariant symplectic potential for tetrad general relativity, J. High Energy Phys., 2018, 40 · Zbl 1395.83046 · doi:10.1007/jhep07(2018)040
[61] Henneaux, M.; Troessaert, C., The asymptotic structure of gravity at spatial infinity in four spacetime dimensions (2019)
[62] Barnich, G.; Mao, P.; Ruzziconi, R., BMS current algebra in the context of the Newman-Penrose formalism, Classical Quantum Gravity, 37, 095010 (2020) · Zbl 1479.83179 · doi:10.1088/1361-6382/ab7c01
[63] Barnich, G.; González, H. A.; Salgado-Rebolledo, P., Geometric actions for three-dimensional gravity, Classical Quantum Gravity, 35, 014003 (2017) · Zbl 1382.83073 · doi:10.1088/1361-6382/aa9806
[64] Ashtekar, A.; Bonga, B.; Kesavan, A., Asymptotics with a positive cosmological constant: I. Basic framework, Classical Quantum Gravity, 32, 025004 (2014) · Zbl 1307.83011 · doi:10.1088/0264-9381/32/2/025004
[65] Ashtekar, A.; Bonga, B.; Kesavan, A., Asymptotics with a positive cosmological constant: II. Linear fields on de Sitter spacetime, Phys. Rev. D, 92, 044011 (2015) · doi:10.1103/physrevd.92.044011
[66] Ashtekar, A.; Bonga, B.; Kesavan, A., Asymptotics with a positive cosmological constant: III. The quadrupole formula, Phys. Rev. D, 92, 104032 (2015) · doi:10.1103/physrevd.92.104032
[67] Ashtekar, A.; Bonga, B.; Kesavan, A., Gravitational waves from isolated systems: Surprising consequences of a positive cosmological constant, Phys. Rev. Lett., 116, 051101 (2016) · Zbl 1356.83005 · doi:10.1103/physrevlett.116.051101
[68] Ashtekar, A., Implications of a positive cosmological constant for general relativity, Rep. Prog. Phys., 80, 102901 (2017) · doi:10.1088/1361-6633/aa7bb1
[69] Ashtekar, A.; Bahrami, S., Asymptotics with a positive cosmological constant. IV. The no-incoming radiation condition, Phys. Rev. D, 100, 024042 (2019) · doi:10.1103/physrevd.100.024042
[70] Compère, G.; Fiorucci, A.; Ruzziconi, R., Superboost transitions, refraction memory and super-Lorentz charge algebra, J. High Energy Phys., 2018, 200 · Zbl 1405.83004 · doi:10.1007/jhep11(2018)200
[71] Compère, G.; Fiorucci, A.; Ruzziconi, R., The Λ-BMS_4 group of dS_4 and new boundary conditions for AdS_4, Classical Quantum Gravity, 36, 195017 (2019) · Zbl 1478.83048 · doi:10.1088/1361-6382/ab3d4b
[72] Donnelly, W.; Freidel, L., Local subsystems in gauge theory and gravity, J. High Energy Phys., 2016, 102 · Zbl 1390.83016 · doi:10.1007/jhep09(2016)102
[73] Gomes, H.; Riello, A., The observer’s ghost: Notes on a field space connection, J. High Energy Phys., 2017, 17 · Zbl 1380.83020 · doi:10.1007/jhep05(2017)017
[74] Hopfmüller, F.; Freidel, L., Gravity degrees of freedom on a null surface, Phys. Rev. D, 95, 104006 (2017) · doi:10.1103/physrevd.95.104006
[75] Hopfmüller, F.; Freidel, L., Null conservation laws for gravity, Phys. Rev. D, 97, 124029 (2018) · doi:10.1103/physrevd.97.124029
[76] Chandrasekaran, V.; Flanagan, É. É.; Prabhu, K., Symmetries and charges of general relativity at null boundaries, J. High Energy Phys., 2018, 125 · Zbl 1404.83016 · doi:10.1007/jhep11(2018)125
[77] Speranza, A. J., Local phase space and edge modes for diffeomorphism-invariant theories, J. High Energy Phys., 2018, 21 · Zbl 1387.83011 · doi:10.1007/jhep02(2018)021
[78] Gomes, H.; Riello, A., Unified geometric framework for boundary charges and particle dressings, Phys. Rev. D, 98, 025013 (2018) · doi:10.1103/physrevd.98.025013
[79] Freidel, L.; Livine, E.; Pranzetti, D., Gravitational edge modes: From Kac-Moody charges to Poincaré networks, Classical Quantum Gravity, 36, 195014 (2019) · Zbl 1478.83089 · doi:10.1088/1361-6382/ab40fe
[80] Riello, A., Soft charges from the geometry of field space, J. High Energy Phys., 2020, 125 · doi:10.1007/jhep05(2020)125
[81] Donnay, L.; Giribet, G.; González, H. A.; Pino, M., Supertranslations and superrotations at the black hole horizon, Phys. Rev. Lett., 116, 091101 (2016) · doi:10.1103/physrevlett.116.091101
[82] Donnay, L.; Giribet, G.; González, H. A.; Pino, M., Extended symmetries at the black hole horizon, J. High Energy Phys., 2016, 100 · Zbl 1390.83191 · doi:10.1007/jhep09(2016)100
[83] Donnay, L.; Marteau, C., Carrollian physics at the black hole horizon, Classical Quantum Gravity, 36, 165002 (2019) · Zbl 1477.83050 · doi:10.1088/1361-6382/ab2fd5
[84] Hartong, J., Gauging the Carroll algebra and ultra-relativistic gravity, J. High Energy Phys., 2015, 69 · Zbl 1388.83257 · doi:10.1007/jhep08(2015)069
[85] Bekaert, X.; Morand, K., Connections and dynamical trajectories in generalised Newton-Cartan gravity. II. An ambient perspective, J. Math. Phys., 59, 072503 (2018) · Zbl 1397.83096 · doi:10.1063/1.5030328
[86] Morand, K., Embedding Galilean and Carrollian geometries I. Gravitational waves (2018)
[87] Ciambelli, L.; Leigh, R. G.; Marteau, C.; Petropoulos, M., Carroll structures, null geometry, and conformal isometries, Phys. Rev. D, 100, 046010 (2019) · doi:10.1103/physrevd.100.046010
[88] Adamo, T.; Casali, E.; Skinner, D., Perturbative gravity at null infinity, Classical Quantum Gravity, 31, 225008 (2014) · Zbl 1304.81146 · doi:10.1088/0264-9381/31/22/225008
[89] Geyer, Y.; Lipstein, A. E.; Mason, L., Ambitwistor strings at null infinity and (subleading) soft limits, Classical Quantum Gravity, 32, 055003 (2015) · Zbl 1309.83090 · doi:10.1088/0264-9381/32/5/055003
[90] Bagchi, A.; Basu, R.; Mehra, A.; Nandi, Field theories on null manifolds, J. High Energy Phys., 2020, 141 · Zbl 1435.81114 · doi:10.1007/JHEP02(2020)141
[91] Gupta, N.; Suryanarayana, N. V., Constructing carrollian CFTs (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.